On approximating non-Archimedean Julia sets

joint work with Jean-Yves Briend

Liang-Chung Hsia
National Taiwan Normal University

Complex and p-adic Dynamics at ICERM
February 13-17, 2012.
Outline

1. Introduction
2. Non-Archimedean Julia set
3. Polynomials
4. Question
\[K : \text{a field complete with respect to absolute value} \ | \cdot| \]

\[\varphi : \mathbb{P}^1 \rightarrow \mathbb{P}^1 \text{ of degree } d \geq 2 \text{ over } K. \]

\[J_\varphi(K) = \text{the } K\text{-rational Julia set of } \varphi \]

\[= \text{the subset of points in } \mathbb{P}^1(K) \text{ where } \{\varphi^n\}_{n \geq 1} \]

is not equicontinuous.

Problem

To compute/visualize \(J_\varphi(K) \).

In general this is a difficult problem in the case where \(K = \mathbb{C} \).

Theorem (Braverman-Yampolsky)

There exist a complex number \(c \) such that the (complex) Julia set of the quadratic polynomial \(\varphi_c(z) = z^2 + c \) is not computable.
K: a field complete with respect to absolute value $|\cdot|$

$\varphi: \mathbb{P}^1 \rightarrow \mathbb{P}^1$ of degree $d \geq 2$ over K.

$J_\varphi(K) =$ the K-rational Julia set of φ

$= \text{the subset of points in } \mathbb{P}^1(K) \text{ where } \{\varphi^n\}_{n \geq 1}$

is not equicontinuous.

Problem

To compute/visualize $J_\varphi(K)$.

In general this is a difficult problem in the case where $K = \mathbb{C}$.

Theorem (Braverman-Yampolsky)

There exist a complex number c such that the (complex) Julia set of the quadratic polynomial $\varphi_c(z) = z^2 + c$ is not computable.
K : a field complete with respect to absolute value $| \cdot |$

$\varphi : \mathbb{P}^1 \rightarrow \mathbb{P}^1$ of degree $d \geq 2$ over K.

$\mathcal{J}_\varphi(K) = \text{the } K\text{-rational Julia set of } \varphi$

$= \text{the subset of points in } \mathbb{P}^1(K) \text{ where } \{ \varphi^n \}_{n \geq 1}$

is not equicontinuous.

Problem

To compute/visualize $\mathcal{J}_\varphi(K)$.

In general this is a difficult problem in the case where $K = \mathbb{C}$.

Theorem (Braverman-Yampolsky)

There exist a complex number c such that the (complex) Julia set of the quadratic polynomial $\varphi_c(z) = z^2 + c$ is not computable.
\(K \): a field complete with respect to absolute value \(| \cdot | \)

\(\varphi : \mathbb{P}^1 \to \mathbb{P}^1 \) of degree \(d \geq 2 \) over \(K \).

\(J_\varphi(K) = \) the \(K \)-rational Julia set of \(\varphi \)
\(= \) the subset of points in \(\mathbb{P}^1(K) \) where \(\{\varphi^n\}_{n \geq 1} \)
is not equicontinuous.

Problem

To compute/visualize \(J_\varphi(K) \).

In general this is a difficult problem in the case where \(K = \mathbb{C} \).

Theorem (Braverman-Yampolsky)

There exist a complex number \(c \) such that the (complex) Julia set of the quadratic polynomial \(\varphi_c(z) = z^2 + c \) is not computable.
K : a field complete with respect to absolute value $| \cdot |$

$\varphi : \mathbb{P}^1 \rightarrow \mathbb{P}^1$ of degree $d \geq 2$ over K.

$J_\varphi(K) =$ the K-rational Julia set of φ

$= \text{the subset of points in } \mathbb{P}^1(K) \text{ where } \{\varphi^n\}_{n \geq 1}$

is not equicontinuous.

Problem

To compute/visualize $J_\varphi(K)$.

In general this is a difficult problem in the case where $K = \mathbb{C}$.

Theorem (Braverman-Yampolsky)

There exist a complex number c such that the (complex) Julia set of the quadratic polynomial $\varphi_c(z) = z^2 + c$ is not computable.
Notation for non-Archimedean field

\(K \) a discretely valued field,
\(\nu: K^* \to \mathbb{Z} \) valuation on \(K \),
\(|x| = a^{-\nu(x)} \) for some \(a > 1 \),
\(\mathcal{O}_K \) the ring of integers of \(K \),
\(\pi \) a uniformizer such that \(\mathcal{M}_K = \pi \mathcal{O}_K \),
\(\tilde{K} = \mathcal{O}_K/\mathcal{M}_K \) assumed to be algebraically closed,
\(p = \text{Char}(\tilde{K}) \geq 0 \),
\(\mathcal{C}_\nu \) completion of an algebraic closure of \(K \),
\(\hat{\mathcal{O}}_\nu \) the ring of integers of \(\mathcal{C}_\nu \).
K a discretely valued field,

$v : K^* \rightarrow \mathbb{Z}$ valuation on K,

$|x| = a^{-v(x)}$ for some $a > 1$,

\mathcal{O}_K the ring of integers of K,

π a uniformizer such that $\mathcal{M}_K = \pi \mathcal{O}_K$,

$\tilde{K} = \mathcal{O}_K/\mathcal{M}_K$ assumed to be algebraically closed,

$p = \text{Char}(\tilde{K}) \geq 0$,

\mathbb{C}_v completion of an algebraic closure of K,

$\hat{\mathcal{O}}_v$ the ring of integers of \mathbb{C}_v.
Notation for non-Archimedean field

\(K \) a discretely valued field,
\(\nu : K^* \to \mathbb{Z} \) valuation on \(K \),
\(|x| = a^{-\nu(x)} \) for some \(a > 1 \),
\(\mathcal{O}_K \) the ring of integers of \(K \),
\(\pi \) a uniformizer such that \(\mathfrak{M}_K = \pi \mathcal{O}_K \),
\(\tilde{\mathcal{K}} = \mathcal{O}_K / \mathfrak{M}_K \) assumed to be algebraically closed,
\(p = \text{Char}(\tilde{\mathcal{K}}) \geq 0 \),
\(C_\nu \) completion of an algebraic closure of \(K \),
\(\hat{\mathcal{O}}_\nu \) the ring of integers of \(C_\nu \).
Notation for non-Archimedean field

\(K \) a discretely valued field,
\(\nu : K^* \rightarrow \mathbb{Z} \) valuation on \(K \),
\(|x| = a^{-\nu(x)} \) for some \(a > 1 \),
\(\mathcal{O}_K \) the ring of integers of \(K \),
\(\pi \) a uniformizer such that \(\mathcal{M}_K = \pi \mathcal{O}_K \),
\(\tilde{K} = \mathcal{O}_K / \mathcal{M}_K \) assumed to be algebraically closed,
\(p = \text{Char}(\tilde{K}) \geq 0 \),
\(\mathbb{C}_\nu \) completion of an algebraic closure of \(K \),
\(\hat{\mathcal{O}}_\nu \) the ring of integers of \(\mathbb{C}_\nu \).
Notation for non-Archimedean field

\(K \) a discretely valued field,
\(\nu : K^* \rightarrow \mathbb{Z} \) valuation on \(K \),
\(|x| = a^{-\nu(x)} \) for some \(a > 1 \),
\(\mathcal{O}_K \) the ring of integers of \(K \),
\(\pi \) a uniformizer such that \(\mathcal{M}_K = \pi \mathcal{O}_K \),
\(\tilde{K} = \mathcal{O}_K / \mathcal{M}_K \) assumed to be algebraically closed,
\(p = \text{Char}(\tilde{K}) \geq 0 \),
\(\mathbb{C}_\nu \) completion of an algebraic closure of \(K \),
\(\hat{\mathcal{O}}_\nu \) the ring of integers of \(\mathbb{C}_\nu \).
Notation for non-Archimedean field

- K a discretely valued field,
- $\nu : K^* \to \mathbb{Z}$ valuation on K,
- $|x| = a^{-\nu(x)}$ for some $a > 1$,
- \mathcal{O}_K the ring of integers of K,
- π a uniformizer such that $\mathcal{M}_K = \pi \mathcal{O}_K$,
- $\tilde{K} = \mathcal{O}_K / \mathcal{M}_K$ assumed to be algebraically closed,
- $p = \text{Char}(\tilde{K}) \geq 0$,
- \mathbb{C}_ν completion of an algebraic closure of K,
- $\hat{\mathcal{O}}_\nu$ the ring of integers of \mathbb{C}_ν.

Liang-Chung Hsia, NTNU
Notation for non-Archimedean field

\(K \) a discretely valued field,

\[\nu : K^* \rightarrow \mathbb{Z} \] valuation on \(K \),

\[|x| = a^{-\nu(x)} \] for some \(a > 1 \),

\(\mathcal{O}_K \) the ring of integers of \(K \),

\(\pi \) a uniformizer such that \(\mathcal{M}_K = \pi \mathcal{O}_K \),

\(\tilde{K} = \mathcal{O}_K/\mathcal{M}_K \) assumed to be algebraically closed,

\(p = \text{Char}(\tilde{K}) \geq 0 \),

\(\mathbb{C}_v \) completion of an algebraic closure of \(K \),

\(\hat{\mathcal{O}}_v \) the ring of integers of \(\mathbb{C}_v \).
Notation for non-Archimedean field

\(K \) a discretely valued field,

\(\nu : K^* \to \mathbb{Z} \) valuation on \(K \),

\(|x| = a^{-\nu(x)} \) for some \(a > 1 \),

\(\mathcal{O}_K \) the ring of integers of \(K \),

\(\pi \) a uniformizer such that \(\mathcal{M}_K = \pi \mathcal{O}_K \),

\(\tilde{K} = \mathcal{O}_K / \mathcal{M}_K \) assumed to be algebraically closed,

\(p = \text{Char}(\tilde{K}) \geq 0 \),

\(\mathbb{C}_v \) completion of an algebraic closure of \(K \),

\(\hat{\mathcal{O}}_v \) the ring of integers of \(\mathbb{C}_v \).
Notation for non-Archimedean field

\[K \] a discretely valued field,
\[\nu : K^* \to \mathbb{Z} \] valuation on \(K \),
\[|x| = a^{-\nu(x)} \] for some \(a > 1 \),
\[\mathcal{O}_K \] the ring of integers of \(K \),
\[\pi \] a uniformizer such that \(\mathcal{M}_K = \pi \mathcal{O}_K \),
\[\tilde{K} = \mathcal{O}_K / \mathcal{M}_K \] assumed to be algebraically closed,
\[p = \text{Char}(\tilde{K}) \geq 0, \]
\[\mathbb{C}_\nu \] completion of an algebraic closure of \(K \),
\[\hat{\mathcal{O}}_\nu \] the ring of integers of \(\mathbb{C}_\nu \).
Notation for non-Archimedean field

\(K \) a discretely valued field,
\(\nu : K^* \to \mathbb{Z} \) valuation on \(K \),
\(|x| = a^{-\nu(x)} \) for some \(a > 1 \),
\(\mathcal{O}_K \) the ring of integers of \(K \),
\(\pi \) a uniformizer such that \(\mathcal{M}_K = \pi \mathcal{O}_K \),
\(\tilde{K} = \mathcal{O}_K / \mathcal{M}_K \) assumed to be algebraically closed,
\(p = \text{Char}(\tilde{K}) \geq 0 \),
\(\mathbb{C}_v \) completion of an algebraic closure of \(K \),
\(\hat{\mathcal{O}}_v \) the ring of integers of \(\mathbb{C}_v \).
Write $\varphi(x, y) = [f(x, y), g(x, y)]$ with $f, g \in \mathcal{O}_K[x, y]$, homogeneous of degree d with at least one coefficient being a unit. Set $\widetilde{\varphi} = [\widetilde{f}, \widetilde{g}]$.

Good reduction: φ is said to have good reduction (over \mathbb{C}_v) if there exists a $\gamma \in \text{PGL}(2, \mathbb{C}_v)$ such that

$$
\varphi^\gamma(z) = (\gamma^{-1} \circ \varphi \circ \gamma)(z) = \frac{f(z)}{g(z)}, \quad f, g \in \hat{\mathcal{O}}_v[z]
$$

satisfying

$$
\nu(\text{Res}(\varphi)) = 0.
$$
Write $\varphi(x, y) = [f(x, y), g(x, y)]$ with $f, g \in \mathcal{O}_K[x, y]$, homogeneous of degree d with at least one coefficient being a unit. Set $\tilde{\varphi} = [\tilde{f}, \tilde{g}]$.

Good reduction: φ is said to have good reduction (over \mathbb{C}_v) if there exists a $\gamma \in \text{PGL}(2, \mathbb{C}_v)$ such that

$$
\varphi^\gamma(z) = (\gamma^{-1} \circ \varphi \circ \gamma)(z) = \frac{f(z)}{g(z)}, \quad f, g \in \hat{\mathcal{O}}_v[z]
$$

satisfying

$$
v(\text{Res}(\varphi)) = 0.
$$
Write \(\varphi(x, y) = [f(x, y), g(x, y)] \) with \(f, g \in \mathcal{O}_K[x, y] \), homogeneous of degree \(d \) with at least one coefficient being a unit. Set \(\tilde{\varphi} = [\tilde{f}, \tilde{g}] \).

Good reduction: \(\varphi \) is said to have good reduction (over \(\mathbb{C}_v \)) if there exists a \(\gamma \in \operatorname{PGL}(2, \mathbb{C}_v) \) such that

\[
\varphi^\gamma(z) = (\gamma^{-1} \circ \varphi \circ \gamma)(z) = \frac{f(z)}{g(z)}, \quad f, g \in \hat{\mathcal{O}}_v[z]
\]

satisfying

\[
\nu(\operatorname{Res}(\varphi)) = 0.
\]
Although it’s not explicitly stated, P. Morton and J. Silverman’s work shows that:

Theorem (Morton-Silverman)

If φ has good reduction over \mathbb{C}_v then $J_\varphi = J_\varphi(\mathbb{C}_v)$ is empty.

Remark (Properties of Julia set)

1. $J_\varphi \subset \overline{\bigcup_m \text{Per}_m(\varphi)}$ (closure in $\mathbb{P}^1(\mathbb{C}_p)$).
2. J_φ may not be compact in $\mathbb{P}^1(\mathbb{C}_p)$.
3. A periodic point for φ is in the Julia set J_φ if and only if it is a repelling periodic point.
Although it’s not explicitly stated, P. Morton and J. Silverman’s work shows that:

Theorem (Morton-Silverman)

If φ has good reduction over \mathbb{C}_v then $\mathcal{J}_\varphi = \mathcal{J}_\varphi(\mathbb{C}_v)$ is empty.

Remark (Properties of Julia set)

1. $\mathcal{J}_\varphi \subset \overline{\bigcup_m \text{Per}_m(\varphi)}$ (closure in $\mathbb{P}^1(\mathbb{C}_p)$).
2. \mathcal{J}_φ may not be compact in $\mathbb{P}^1(\mathbb{C}_p)$.
3. A periodic point for φ is in the Julia set \mathcal{J}_φ if and only if it is a repelling periodic point.
Although it’s not explicitly stated, P. Morton and J. Silverman’s work shows that:

Theorem (Morton-Silverman)

If \(\varphi \) has good reduction over \(\mathbb{C}_v \) then \(J_\varphi = J_\varphi(\mathbb{C}_v) \) is empty.

Remark (Properties of Julia set)

1. \(J_\varphi \subset \overline{\bigcup_m \text{Per}_m(\varphi)} \) (closure in \(\mathbb{P}^1(\mathbb{C}_p) \)).
2. \(J_\varphi \) may not be compact in \(\mathbb{P}^1(\mathbb{C}_p) \).
3. A periodic point for \(\varphi \) is in the Julia set \(J_\varphi \) if and only if it is a repelling periodic point.
Although it’s not explicitly stated, P. Morton and J. Silverman’s work shows that:

Theorem (Morton-Silverman)

If φ has good reduction over \mathbb{C}_v then $J_\varphi = J_\varphi(\mathbb{C}_v)$ is empty.

Remark (Properties of Julia set)

1. $J_\varphi \subset \overline{\bigcup_m \text{Per}_m(\varphi)}$ (closure in $\mathbb{P}^1(\mathbb{C}_p)$).
2. J_φ may not be compact in $\mathbb{P}^1(\mathbb{C}_p)$.
3. A periodic point for φ is in the Julia set J_φ if and only if it is a repelling periodic point.
Although it’s not explicitly stated, P. Morton and J. Silverman’s work shows that:

Theorem (Morton-Silverman)

If φ has good reduction over \mathbb{C}_v then $J_{\varphi} = J_{\varphi}(\mathbb{C}_v)$ is empty.

Remark (Properties of Julia set)

1. $J_{\varphi} \subset \overline{\bigcup_m \text{Per}_m(\varphi)}$ (closure in $\mathbb{P}^1(\mathbb{C}_p)$).
2. J_{φ} may not be compact in $\mathbb{P}^1(\mathbb{C}_p)$.
3. A periodic point for φ is in the Julia set J_{φ} if and only if it is a repelling periodic point.
Detecting the Julia set

• \(\mathcal{J}_\varphi(K) \subset \mathbb{P}^1(K) \subset \mathbb{P}^1_{\text{Berk}} \) (the Berkovich projective line).

We would like to compute \(\mathcal{J}_\varphi(K) \) as a subtree of \(\mathbb{P}^1_{\text{Berk}} \).

Julia set and Indeterminacies:

- \(X \) a smooth separated scheme of finite type over \(\mathcal{O}_K \), satisfying
 (i) the generic fiber \(X_\eta \simeq \mathbb{P}^1_K \); and
 (ii) \(\mathbb{P}^1(K) \simeq X(\mathcal{O}_K) \).

In this talk, we call such an \(X \) a model of \(\mathbb{P}^1_K \).

• Let \(\phi \) denote the extension of \(\varphi \) on \(X \). Then, in general we get a rational map

\[
\phi : X \rightarrow X.
\]
Detecting the Julia set

• $\mathcal{J}_\phi(K) \subset \mathbb{P}^1(K) \subset \mathbb{P}^1_{\text{Berk}}$ (the Berkovich projective line).

We would like to compute $\mathcal{J}_\phi(K)$ as a subtree of $\mathbb{P}^1_{\text{Berk}}$.

Julia set and Indeterminacies:

- X a smooth separated scheme of finite type over \mathcal{O}_K, satisfying
 (i) the generic fiber $X_\eta \simeq \mathbb{P}^1_K$; and
 (ii) $\mathbb{P}^1(K) \simeq X(\mathcal{O}_K)$.

In this talk, we call such an X a model of \mathbb{P}^1_K.
• Let ϕ denote the extension of φ on X. Then, in general we get a rational map

$$\phi : X \dashrightarrow X.$$
Detecting the Julia set

- $\mathcal{J}_\varphi(K) \subset \mathbb{P}^1(K) \subset \mathbb{P}^1_{\text{Berk}}$ (the Berkovich projective line).

We would like to compute $\mathcal{J}_\varphi(K)$ as a subtree of $\mathbb{P}^1_{\text{Berk}}$.

Julia set and Indeterminacies:

X a smooth separated scheme of finite type over \mathcal{O}_K, satisfying

(i) the generic fiber $X_\eta \simeq \mathbb{P}^1_K$; and

(ii) $\mathbb{P}^1(K) \simeq X(\mathcal{O}_K)$.

In this talk, we call such an X a model of \mathbb{P}^1_K.

- Let ϕ denote the extension of φ on X. Then, in general we get a rational map

$$\phi : X \dashrightarrow X.$$
Detecting the Julia set

- \(\mathcal{J}_\phi(K) \subset \mathbb{P}^1(K) \subset \mathbb{P}_\text{Berk}^1 \) (the Berkovich projective line).

We would like to compute \(\mathcal{J}_\phi(K) \) as a subtree of \(\mathbb{P}_\text{Berk}^1 \).

Julia set and Indeterminacies:

- \(X \) a smooth separated scheme of finite type over \(\mathcal{O}_K \), satisfying
 (i) the generic fiber \(X_\eta \simeq \mathbb{P}_K^1 \); and
 (ii) \(\mathbb{P}^1(K) \simeq X(\mathcal{O}_K) \).

In this talk, we call such an \(X \) a model of \(\mathbb{P}_K^1 \).

- Let \(\phi \) denote the extension of \(\phi \) on \(X \). Then, in general we get a rational map

 \[\phi : X \rightarrow X. \]
Detecting the Julia set

- $\mathcal{J}_\varphi(K) \subset \mathbb{P}^1(K) \subset \mathbb{P}^1_{\text{Berk}}$ (the Berkovich projective line).

We would like to compute $\mathcal{J}_\varphi(K)$ as a subtree of $\mathbb{P}^1_{\text{Berk}}$.

Julia set and Indeterminacies:

- X a smooth separated scheme of finite type over \mathcal{O}_K, satisfying

 (i) the generic fiber $X_\eta \simeq \mathbb{P}^1_K$; and

 (ii) $\mathbb{P}^1(K) \simeq X(\mathcal{O}_K)$.

In this talk, we call such an X a model of \mathbb{P}^1_K.

- Let ϕ denote the extension of φ on X. Then, in general we get a rational map

 $$\phi : X \dashrightarrow X.$$
Detecting the Julia set

- $\mathcal{J}_\varphi(K) \subset \mathbb{P}^1(K) \subset \mathbb{P}^1_{\text{Berk}}$ (the Berkovich projective line).

We would like to compute $\mathcal{J}_\varphi(K)$ as a subtree of $\mathbb{P}^1_{\text{Berk}}$.

Julia set and Indeterminacies:

- X a smooth separated scheme of finite type over \mathcal{O}_K, satisfying
 - (i) the generic fiber $X_\eta \simeq \mathbb{P}^1_K$; and
 - (ii) $\mathbb{P}^1(K) \simeq X(\mathcal{O}_K)$.

In this talk, we call such an X a model of \mathbb{P}^1_K.
- Let ϕ denote the extension of φ on X. Then, in general we get a rational map

 \[\phi : X \to X. \]
Detecting the Julia set

- \(\mathcal{J}_\varphi(K) \subset \mathbb{P}^1(K) \subset \mathbb{P}^1_{\text{Berk}} \) (the Berkovich projective line).

We would like to compute \(\mathcal{J}_\varphi(K) \) as a subtree of \(\mathbb{P}^1_{\text{Berk}} \).

Julia set and Indeterminacies:

- \(X \) a smooth separated scheme of finite type over \(\mathcal{O}_K \), satisfying

 (i) the generic fiber \(X_\eta \simeq \mathbb{P}^1_K \); and

 (ii) \(\mathbb{P}^1(K) \simeq X(\mathcal{O}_K) \).

In this talk, we call such an \(X \) a model of \(\mathbb{P}^1_K \).

- Let \(\phi \) denote the extension of \(\varphi \) on \(X \). Then, in general we get a rational map

 \[\phi : X \rightarrow X. \]
Detecting the Julia set

• \(\mathcal{J}_\varphi(K) \subset \mathbb{P}^1(K) \subset \mathbb{P}^1_{\text{Berk}} \) (the Berkovich projective line).

We would like to compute \(\mathcal{J}_\varphi(K) \) as a subtree of \(\mathbb{P}^1_{\text{Berk}} \).

Julia set and Indeterminacies:

\(X \) a smooth separated scheme of finite type over \(\mathcal{O}_K \), satisfying

(i) the generic fiber \(X_\eta \simeq \mathbb{P}^1_K \); and

(ii) \(\mathbb{P}^1(K) \simeq X(\mathcal{O}_K) \).

In this talk, we call such an \(X \) a model of \(\mathbb{P}^1_K \).

• Let \(\phi \) denote the extension of \(\varphi \) on \(X \). Then, in general we get a rational map

\[\phi : X \dashrightarrow X. \]
Detecting the Julia set

- \(\mathcal{J}_\varphi(K) \subset \mathbb{P}^1(K) \subset \mathbb{P}^1_{\text{Berk}} \) (the Berkovich projective line).

We would like to compute \(\mathcal{J}_\varphi(K) \) as a subtree of \(\mathbb{P}^1_{\text{Berk}} \).

Julia set and Indeterminacies:

- \(X \) a smooth separated scheme of finite type over \(\mathcal{O}_K \), satisfying
 - (i) the generic fiber \(X_\eta \cong \mathbb{P}^1_K \); and
 - (ii) \(\mathbb{P}^1(K) \cong X(\mathcal{O}_K) \).

In this talk, we call such an \(X \) a model of \(\mathbb{P}^1_K \).

- Let \(\phi \) denote the extension of \(\varphi \) on \(X \). Then, in general we get a rational map
 \[
 \phi : X \dashrightarrow X.
 \]
Detecting the Julia set

Let \tilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^1(K)$.
\[\overline{Q} = \text{the closure of } Q \text{ in } X. \]
\[\hat{Q} = \text{the closed point where } \overline{Q} \text{ meets with } \tilde{X}. \]

Theorem

Assume that $J_\phi(K)$ is non-empty and let $Q \in J_\phi(K)$. Then
\[\{ \phi^n(Q) \mid n \geq 1 \} \text{ has non-empty intersection with the set of indeterminacies of } \phi. \]

Remark

(1) If there is a model X of \mathbb{P}^1_K such that the extension ϕ is a morphism on X, then $J_\phi(K)$ is empty.

(2) Such a model is called a weak Néron model for the pair (\mathbb{P}^1_K, ϕ) by Call and Silverman.
Detecting the Julia set

Let \tilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^1(K)$.
\[
\overline{Q} = \text{the closure of } Q \text{ in } X.
\]
\[
Q = \text{the closed point where } \overline{Q} \text{ meets with } \tilde{X}.
\]

Theorem

Assume that $J_{\phi}(K)$ is non-empty and let $Q \in J_{\phi}(K)$. Then
\[
\{\phi^n(Q) \mid n \geq 1\} \text{ has non-empty intersection with the set of \textbf{indeterminacies} of } \phi.
\]

Remark

(1) If there is a model X of \mathbb{P}^1_K such that the extension ϕ is a morphism on X, then $J_{\phi}(K)$ is empty.

(2) Such a model is called a weak Néron model for the pair $(\mathbb{P}^1_K, \varphi)$ by Call and Silverman.
Detecting the Julia set

Let \tilde{X} denote the special fiber of X and let $Q \in \mathbb{P}_K^1$. \overline{Q} = the closure of Q in X. Q = the closed point where \overline{Q} meets with \tilde{X}.

Theorem

Assume that $J_\varphi(K)$ is non-empty and let $Q \in J_\varphi(K)$. Then $\{\varphi^n(Q) | n \geq 1\}$ has non-empty intersection with the set of indeterminacies of ϕ.

Remark

(1) If there is a model X of \mathbb{P}_K^1 such that the extension ϕ is a morphism on X, then $J_\varphi(K)$ is empty.

(2) Such a model is called a weak Néron model for the pair $(\mathbb{P}_K^1, \varphi)$ by Call and Silverman.
Detecting the Julia set

Let \(\tilde{X} \) denote the special fiber of \(X \) and let \(Q \in \mathbb{P}^1(K) \).
\(\overline{Q} \) = the closure of \(Q \) in \(X \).
\(Q \) = the closed point where \(\overline{Q} \) meets with \(\tilde{X} \).

Theorem

Assume that \(J_\varphi(K) \) is non-empty and let \(Q \in J_\varphi(K) \). Then
\[\{ \varphi^n(Q) \mid n \geq 1 \} \] has non-empty intersection with the set of indeterminacies of \(\varphi \).

Remark

(1) If there is a model \(X \) of \(\mathbb{P}^1_K \) such that the extension \(\varphi \) is a morphism on \(X \), then \(J_\varphi(K) \) is empty.

(2) Such a model is called a weak Néron model for the pair \((\mathbb{P}^1_K, \varphi)\) by Call and Silverman.
Detecting the Julia set

Let \tilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^1(K)$.
\overline{Q} = the closure of Q in X.
\check{Q} = the closed point where \overline{Q} meets with \tilde{X}.

Theorem

Assume that $J_\varphi(K)$ is non-empty and let $Q \in J_\varphi(K)$. Then
$\{\varphi^n(Q) \mid n \geq 1\}$ has non-empty intersection with the set of indeterminacies of ϕ.

Remark

(1) If there is a model X of \mathbb{P}^1_K such that the extension ϕ is a morphism on X, then $J_\varphi(K)$ is empty.

(2) Such a model is called a weak Néron model for the pair $(\mathbb{P}^1_K, \varphi)$ by Call and Silverman.
Detecting the Julia set

Let \tilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^1(K)$. $\overline{Q} =$ the closure of Q in X. $Q =$ the closed point where \overline{Q} meets with \tilde{X}.

Theorem

Assume that $J_\varphi(K)$ is non-empty and let $Q \in J_\varphi(K)$. Then $\{\varphi^n(Q) \mid n \geq 1\}$ has non-empty intersection with the set of indeterminacies of ϕ.

Remark

(1) If there is a model X of \mathbb{P}^1_K such that the extension ϕ is a morphism on X, then $J_\varphi(K)$ is empty.

(2) Such a model is called a weak Néron model for the pair $(\mathbb{P}^1_K, \varphi)$ by Call and Silverman.
Let \tilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^1(K)$.
\overline{Q} = the closure of Q in X.
\tilde{Q} = the closed point where \overline{Q} meets with \tilde{X}.

Theorem

Assume that $\mathcal{J}_\varphi(K)$ is non-empty and let $Q \in \mathcal{J}_\varphi(K)$. Then
$\{\varphi^n(Q) \mid n \geq 1\}$ has non-empty intersection with the set of indeterminacies of ϕ.

Remark

(1) If there is a model X of \mathbb{P}^1_K such that the extension ϕ is a morphism on X, then $\mathcal{J}_\varphi(K)$ is empty.

(2) Such a model is called a weak Néron model for the pair $(\mathbb{P}^1_K, \varphi)$ by Call and Silverman.
Detecting the Julia set

Let \(\tilde{X} \) denote the special fiber of \(X \) and let \(Q \in \mathbb{P}^1(K) \).

- \(\overline{Q} \) = the closure of \(Q \) in \(X \).
- \(\tilde{Q} \) = the closed point where \(\overline{Q} \) meets with \(\tilde{X} \).

Theorem

Assume that \(J_\phi(K) \) is non-empty and let \(Q \in J_\phi(K) \). Then

\[
\{ \varphi^n(Q) \mid n \geq 1 \}
\]

has non-empty intersection with the set of indeterminacies of \(\phi \).

Remark

(1) If there is a model \(X \) of \(\mathbb{P}^1_K \) such that the extension \(\phi \) is a morphism on \(X \), then \(J_\phi(K) \) is empty.

(2) Such a model is called a weak Néron model for the pair \((\mathbb{P}^1_K, \phi)\) by Call and Silverman.
An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi : X \rightarrow X.$$

By blowing up the indeterminacies of ϕ we can find a model X' and a birational morphism $\tau : X' \rightarrow X$ such that ϕ is lifted to a morphism

$$\hat{\phi} : X' \rightarrow X$$

such that we have a (triangle) diagram ! Repeat the process, we obtain a sequence of models $X_0 \xleftarrow{T_0} X_1 \xleftarrow{T_1} X_2 \leftarrow \cdots X_n \leftarrow \cdots$

Let T_i be the dual graph of \tilde{X}_i. Then, we have

$$T_0 \rightarrow T_1 \rightarrow T_2 \rightarrow \cdots$$

Put $T_\varphi := \lim \rightarrow T_i \hookrightarrow \mathbb{P}^1_{\text{Berk}}$. Then, $J_\varphi(K) \simeq \partial T_\varphi$.
An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi : X \rightarrow X.$$

By blowing up the indeterminacies of ϕ we can find a model X' and a birational morphism $\tau : X' \rightarrow X$ such that ϕ is lifted to a morphism

$$\hat{\phi} : X' \rightarrow X$$

such that we have a (triangle) diagram ! Repeat the process, we obtain a sequence of models $X_0 \leftarrow X_1 \leftarrow X_2 \leftarrow \cdots X_n \leftarrow \cdots$

Let T_i be the dual graph of \tilde{X}_i. Then, we have

$T_0 \rightarrow T_1 \rightarrow T_2 \rightarrow \cdots$

Put $T_\varphi := \lim_{\rightarrow} T_i \hookrightarrow \mathbb{P}^1_{\text{Berk}}$. Then, $J_\varphi(K) \simeq \partial T_\varphi$.

Liang-Chung Hsia, NTNU
Approximating non-Archimedean sets
An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi : X \rightarrow X.$$

By blowing up the indeterminacies of ϕ we can find a model X' and a birational morphism $\tau : X' \rightarrow X$ such that ϕ is lifted to a morphism

$$\hat{\phi} : X' \rightarrow X$$

such that we have a (triangle) diagram! Repeat the process, we obtain a sequence of models $X_0 \leftarrow X_1 \leftarrow X_2 \leftarrow \cdots X_n \leftarrow \cdots$

Let \mathcal{T}_i be the dual graph of \tilde{X}_i. Then, we have

$$\mathcal{T}_0 \rightarrow \mathcal{T}_1 \rightarrow \mathcal{T}_2 \rightarrow \cdots$$

Put $\mathcal{T}_\varphi := \lim_{\rightarrow} \mathcal{T}_i \hookrightarrow \mathbb{P}^1_{\text{Berk}}$. Then, $J_\varphi(K) \simeq \partial \mathcal{T}_\varphi$.

Liang-Chung Hsia, NTNU

Approximating non-Archimedean sets
An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi : X \rightarrow X.$$

By blowing up the indeterminacies of ϕ we can find a model X'

and a birational morphism $\tau : X' \rightarrow X$ such that ϕ is lifted to a

morphism

$$\hat{\phi} : X' \rightarrow X$$ such that we have a (triangle) diagram ! Repeat the process, we

obtain a sequence of models $X_0 \leftarrow X_1 \leftarrow X_2 \leftarrow \cdots X_n \leftarrow \cdots$

Let \mathcal{T}_i be the dual graph of \tilde{X}_i. Then, we have

$\mathcal{T}_0 \rightarrow \mathcal{T}_1 \rightarrow \mathcal{T}_2 \rightarrow \cdots$

Put $T_\varphi := \lim_{i \rightarrow} \mathcal{T}_i \leftrightarrow \mathbb{P}^1_{\text{Berk}}$. Then, $J_\varphi(K) \simeq \partial T_\varphi$.

Liang-Chung Hsia, NTNU

Approximating non-Archimedean sets
An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi : X \to X.$$

By blowing up the indeterminacies of ϕ we can find a model X' and a birational morphism $\tau : X' \to X$ such that ϕ is lifted to a morphism

$$\hat{\phi} : X' \to X$$

such that we have a (triangle) diagram!

Repeat the process, we obtain a sequence of models $X_0 \overset{T_0}{\leftarrow} X_1 \overset{T_1}{\leftarrow} X_2 \leftarrow \cdots X_n \leftarrow \cdots$

Let T_i be the dual graph of \widetilde{X}_i. Then, we have

$T_0 \to T_1 \to T_2 \to \cdots$

Put $T_{\varphi} := \lim_{\longrightarrow} T_i \hookrightarrow \mathbb{P}^1_{\text{Berk}}$. Then, $J_\varphi(K) \simeq \partial T_{\varphi}$.
An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi : X \dashrightarrow X.$$

By blowing up the indeterminacies of ϕ we can find a model X' and a birational morphism $\tau : X' \to X$ such that ϕ is lifted to a morphism

$$\hat{\phi} : X' \to X$$

such that we have a (triangle) diagram ! Repeat the process, we obtain a sequence of models $X_0 \leftarrow X_1 \leftarrow X_2 \leftarrow \cdots X_n \leftarrow \cdots$

Let \mathcal{T}_i be the dual graph of \tilde{X}_i. Then, we have

$$\mathcal{T}_0 \to \mathcal{T}_1 \to \mathcal{T}_2 \to \cdots$$

Put $\mathcal{T}_\varphi := \lim_{\to} \mathcal{T}_i \hookrightarrow \mathbb{P}^1_{\text{Berk}}$. Then, $\mathcal{J}_\varphi(K) \simeq \partial \mathcal{T}_\varphi$.
An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi : X \rightarrow X.$$

By blowing up the indeterminacies of ϕ we can find a model X' and a birational morphism $\tau : X' \rightarrow X$ such that ϕ is lifted to a morphism

$$\hat{\phi} : X' \rightarrow X$$

such that we have a (triangle) diagram ! Repeat the process, we obtain a sequence of models $X_0 \leftarrow X_1 \leftarrow X_2 \leftarrow \cdots X_n \leftarrow \cdots$

Let \mathcal{T}_i be the dual graph of \tilde{X}_i. Then, we have

$$\mathcal{T}_0 \rightarrow \mathcal{T}_1 \rightarrow \mathcal{T}_2 \rightarrow \cdots$$

Put $\mathcal{T}_\varphi := \lim_{\rightarrow} \mathcal{T}_i \hookrightarrow \mathbb{P}^1_{Berk}$. Then, $\mathcal{J}_\varphi(K) \simeq \partial \mathcal{T}_\varphi$.

Liang-Chung Hsia, NTNU Approximating non-Archimedean sets
An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi : X \dashrightarrow X.$$

By blowing up the indeterminacies of ϕ we can find a model X' and a birational morphism $\tau : X' \to X$ such that ϕ is lifted to a morphism

$$\hat{\phi} : X' \to X$$

such that we have a (triangle) diagram $\xymatrix{\sim}$. Repeat the process, we obtain a sequence of models $X_0 \xleftarrow{T_0} X_1 \xleftarrow{T_1} X_2 \leftarrow \cdots X_n \leftarrow \cdots$ Let T_i be the dual graph of \tilde{X}_i. Then, we have

$$T_0 \to T_1 \to T_2 \to \cdots$$

Put $T_\varphi := \lim \xrightarrow{i} T_i \leftrightarrow \mathbb{P}^1_{\text{Berk}}$. Then, $T_\varphi(K) \simeq \partial T_\varphi$.

Liang-Chung Hsia, NTNU Approximating non-Archimedean sets
An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\varphi : X \rightarrow X.$$

By blowing up the indeterminacies of φ we can find a model X' and a birational morphism $\tau : X' \rightarrow X$ such that φ is lifted to a morphism

$$\hat{\varphi} : X' \rightarrow X$$

such that we have a (triangle) diagram ! Repeat the process, we obtain a sequence of models $X_0 \overset{\tau_0}{\leftarrow} X_1 \overset{\tau_1}{\leftarrow} X_2 \leftarrow \cdots X_n \leftarrow \cdots$

Let \mathcal{T}_i be the dual graph of \tilde{X}_i. Then, we have

$$\mathcal{T}_0 \rightarrow \mathcal{T}_1 \rightarrow \mathcal{T}_2 \rightarrow \cdots$$

Put $\mathcal{T}_{\varphi} := \lim_{\rightarrow} \mathcal{T}_i \leftrightarrow \mathbb{P}^1_{\text{Berk}}$. Then, $\mathcal{J}_\varphi(K) \simeq \partial \mathcal{T}_{\varphi}$.
Example

(1) \(\phi(z) = f(z)/p \) where \(f(z) \in \mathbb{Z}_p[z] \) monic and

\[
f(z) \equiv z^p - z \pmod{p}
\]

Then, \(J_\phi = \mathbb{Z}_p \).

(2) Let \(p \neq 2 \) and \(\phi(z) = pz^3 + az^2 + b \in \mathbb{Z}_p[z] \) with \(a \in \mathbb{Z}_p^* \).

Then,

- \(J_\phi(\mathbb{Q}_p^{nr}) = \{pt\} \).
- \(J_\phi(K) \neq J_\phi \) for any discretely valued subfield \(K \) of \(\mathbb{C}_p \).
- \(J_\phi \) is not compact in \(\mathbb{P}^1(\mathbb{C}_p) \).
p-adic Julia sets

Example

1. $\varphi(z) = f(z)/p$ where $f(z) \in \mathbb{Z}_p[z]$ monic and

 $$f(z) \equiv z^p - z \pmod{p}$$

 Then, $J_\varphi = \mathbb{Z}_p$.

2. Let $p \neq 2$ and $\varphi(z) = pz^3 + az^2 + b \in \mathbb{Z}_p[z]$ with $a \in \mathbb{Z}_p^*$.

 Then,

 - $J_\varphi(\mathbb{Q}_p^nr) = \{pt\}$.
 - $J_\varphi(K) \neq J_\varphi$ for any discretely valued subfield K of \mathbb{C}_p.
 - J_φ is not compact in $\mathbb{P}^1(\mathbb{C}_p)$.
Example

(1) $\varphi(z) = f(z)/p$ where $f(z) \in \mathbb{Z}_p[z]$ monic and

$$f(z) \equiv z^p - z \pmod{p}$$

Then, $J_\varphi = \mathbb{Z}_p$.

(2) Let $p \neq 2$ and $\varphi(z) = pz^3 + az^2 + b \in \mathbb{Z}_p[z]$ with $a \in \mathbb{Z}_p^*$. Then,

- $J_\varphi(\mathbb{Q}_p^{nr}) = \{pt\}$.
- $J_\varphi(K) \neq J_\varphi$ for any discretely valued subfield K of \mathbb{C}_p.
- J_φ is not compact in $\mathbb{P}^1(\mathbb{C}_p)$.
p-adic Julia sets

Example

1. \(\varphi(z) = f(z)/p \) where \(f(z) \in \mathbb{Z}_p[z] \) monic and
 \[
 f(z) \equiv z^p - z \pmod{p}
 \]
 Then, \(J_{\varphi} = \mathbb{Z}_p \).

2. Let \(p \neq 2 \) and \(\varphi(z) = p\zeta^3 + a\zeta^2 + b \in \mathbb{Z}_p[z] \) with \(a \in \mathbb{Z}_p^* \).
 Then,
 - \(J_{\varphi}(\mathbb{Q}_p^{nr}) = \{pt\} \).
 - \(J_{\varphi}(K) \neq J_{\varphi} \) for any discretely valued subfield \(K \) of \(\mathbb{C}_p \).
 - \(J_{\varphi} \) is not compact in \(\mathbb{P}^1(\mathbb{C}_p) \).
p-adic Julia sets

Example

(1) \(\varphi(z) = f(z)/p \) where \(f(z) \in \mathbb{Z}_p[z] \) monic and

\[
f(z) \equiv z^p - z \pmod{p}
\]

Then, \(J_\varphi = \mathbb{Z}_p \).

(2) Let \(p \neq 2 \) and \(\varphi(z) = pz^3 + az^2 + b \in \mathbb{Z}_p[z] \) with \(a \in \mathbb{Z}_p^* \).

Then,

- \(J_\varphi(\mathbb{Q}_p^{nr}) = \{ pt \} \).
- \(J_\varphi(K) \neq J_\varphi \) for any discretely valued subfield \(K \) of \(\mathbb{C}_p \).
- \(J_\varphi \) is not compact in \(\mathbb{P}^1(\mathbb{C}_p) \).
p-adic Julia sets

Example

(1) $\varphi(z) = f(z)/p$ where $f(z) \in \mathbb{Z}_p[z]$ monic and

$$f(z) \equiv z^p - z \pmod{p}$$

Then, $\mathcal{J}_\varphi = \mathbb{Z}_p$.

(2) Let $p \neq 2$ and $\varphi(z) = pz^3 + az^2 + b \in \mathbb{Z}_p[z]$ with $a \in \mathbb{Z}_p^*$.

Then,

- $\mathcal{J}_\varphi(\mathbb{Q}_p^{nr}) = \{pt\}$.
- $\mathcal{J}_\varphi(K) \neq \mathcal{J}_\varphi$ for any discretely valued subfield K of \mathbb{C}_p.
- \mathcal{J}_φ is not compact in $\mathbb{P}^1(\mathbb{C}_p)$.
p-adic Julia sets

Example

1. \(\varphi(z) = f(z)/p \) where \(f(z) \in \mathbb{Z}_p[z] \) monic and

 \[
 f(z) \equiv z^p - z \pmod{p}
 \]

 Then, \(J_\varphi = \mathbb{Z}_p \).

2. Let \(p \neq 2 \) and \(\varphi(z) = pz^3 + az^2 + b \in \mathbb{Z}_p[z] \) with \(a \in \mathbb{Z}_p^* \).

 Then,

 - \(J_\varphi(\mathbb{Q}_p^{nr}) = \{pt\} \).
 - \(J_\varphi(K) \neq J_\varphi \) for any discretely valued subfield \(K \) of \(\mathbb{C}_p \).
 - \(J_\varphi \) is not compact in \(\mathbb{P}^1(\mathbb{C}_p) \).
Density question: Is \mathcal{J}_φ the closure of repelling periodic points? Partial results under some conditions have been obtained.

Theorem (J.-P. Bézivin)

If φ has at least one repelling periodic point, then \mathcal{J}_φ is the closure of repelling periodic points.

Theorem (Y. Okuyama)

If the Lyapunov exponent $L(\varphi)$ is positive, then \mathcal{J}_φ is the closure of repelling periodic points.

Okuyama’s theorem holds over the complex field as well.
Density question: Is \mathcal{J}_φ the closure of repelling periodic points? Partial results under some conditions have been obtained.

Theorem (J.-P. Bézivin)

If φ has at least one repelling periodic point, then \mathcal{J}_φ is the closure of repelling periodic points.

Theorem (Y. Okuyama)

If the Lyapunov exponent $L(\varphi)$ is positive, then \mathcal{J}_φ is the closure of repelling periodic points.

Okuyama’s theorem holds over the complex field as well.
Density of repelling periodic points

Density question: Is \mathcal{J}_φ the closure of repelling periodic points? Partial results under some conditions have been obtained.

Theorem (J.-P. Bézivin)

If φ has at least one repelling periodic point, then \mathcal{J}_φ is the closure of repelling periodic points.

Theorem (Y. Okuyama)

If the Lyapunov exponent $L(\varphi)$ is positive, then \mathcal{J}_φ is the closure of repelling periodic points.

Okuyama’s theorem holds over the complex field as well.
Density question: Is \mathcal{J}_φ the closure of repelling periodic points? Partial results under some conditions have been obtained.

Theorem (J.-P. Bézivin)

If φ has at least one repelling periodic point, then \mathcal{J}_φ is the closure of repelling periodic points.

Theorem (Y. Okuyama)

If the Lyapunov exponent $L(\varphi)$ is positive, then \mathcal{J}_φ is the closure of repelling periodic points.

Okuyama’s theorem holds over the complex field as well.
Question

(1). How to detect whether or not $\mathcal{J}_\varphi(K) = \emptyset$ effectively?

(2). Suppose $\mathcal{J}_\varphi \neq \emptyset$. Is it true that φ has a repelling periodic point?

(3). Assume that $\mathcal{J}_\varphi(K) \neq \emptyset$. Determine the dynamics of φ on $\mathcal{J}_\varphi(K)$.
Question

(1). How to detect whether or not $J_{\varphi}(K) = \emptyset$ effectively?

(2). Suppose $J_{\varphi} \neq \emptyset$. Is it true that φ has a repelling periodic point?

(3). Assume that $J_{\varphi}(K) \neq \emptyset$. Determine the dynamics of φ on $J_{\varphi}(K)$.
Question

(1). How to detect whether or not $J_{\varphi}(K) = \emptyset$ effectively?

(2). Suppose $J_{\varphi} \neq \emptyset$. Is it true that φ has a repelling periodic point?

(3). Assume that $J_{\varphi}(K) \neq \emptyset$. Determine the dynamics of φ on $J_{\varphi}(K)$.
Question

(1). How to detect whether or not \(J_\varphi(K) = \emptyset \) effectively?

(2). Suppose \(J_\varphi \neq \emptyset \). Is it true that \(\varphi \) has a repelling periodic point?

(3). Assume that \(J_\varphi(K) \neq \emptyset \). Determine the dynamics of \(\varphi \) on \(J_\varphi(K) \).
The converse statement of Morton-Silverman Theorem does not hold in general.

Example

(1). Lattès family Let E be an elliptic curve over K and consider diagram:

\[
\begin{array}{ccc}
E & \xrightarrow{[m]} & E \\
\downarrow & & \downarrow \\
\mathbb{P}^1_K & \xrightarrow{\varphi} & \mathbb{P}^1_K
\end{array}
\]

$\Rightarrow J_\varphi = \emptyset$.

・If E is a Tate curve, then φ does not have good reduction over \mathbb{C}_v.

Liang-Chung Hsia, NTNU

Approximating non-Archimedean sets
The converse statement of Morton-Silverman Theorem does not hold in general.

Example

(1). *Lattès family* Let E be an elliptic curve over K and consider diagram:

\[
\begin{align*}
E \xrightarrow{[m]} E & \\
\downarrow & \\
\mathbb{P}^1_K \xrightarrow{\varphi} \mathbb{P}^1_K & \\
\end{align*}
\]

\[\implies J_\varphi = \emptyset.\]

- If E is a Tate curve, then φ does not have good reduction over \mathbb{C}_v.

Liang-Chung Hsia, NTNU

Approximating non-Archimedean sets
The converse statement of Morton-Silverman Theorem does not hold in general.

Example

(1). Lattès family Let E be an elliptic curve over K and consider diagram:

$$
\begin{array}{ccc}
E & \xrightarrow{[m]} & E \\
\downarrow & & \downarrow \\
\mathbb{P}^1_K & \xrightarrow{\varphi} & \mathbb{P}^1_K \\
\end{array}
\Rightarrow \mathcal{J}_\varphi = \emptyset.
$$

- If E is a Tate curve, then φ does not have good reduction over \mathbb{C}_v.
Example

(2). (Favre and Rivera-Letelier) Let $k \geq 2$ and $d_1, \ldots, d_k > 1$ be integers. Let $a_2, \ldots, a_k \in \mathbb{C}_v^*$ such that $|a_k| > \cdots > |a_2| > 0$. Set $\delta_1 = d_1, \delta_j = d_j + d_{j-1}$ for $j = 2, \ldots, k$ and

$$
\varphi(z) = z^{d_1} \prod_{j=2}^{k} \left(1 + (a_j z)^{\delta_j}\right)^{(-1)^j}.
$$

If $\sum d_j^{-1} \leq 1$ then there exist a_2, \ldots, a_k such that $\mathcal{J}_\varphi = \emptyset$ and φ does not have good reduction over \mathbb{C}_v.

We restrict to the case $\varphi(z) \in K[z]$.

- $J_\varphi(K)$ is a compact subset of $\mathbb{P}^1(K)$.

Goal: Look for an effective algorithm to determine whether $J_\varphi(K)$ is empty or not.
We restrict to the case $\varphi(z) \in K[z]$.

- $J_{\varphi}(K)$ is a compact subset of $\mathbb{P}^1(K)$.

Goal: Look for an effective algorithm to determine whether $J_{\varphi}(K)$ is empty or not.
We restrict to the case \(\varphi(z) \in K[z] \).

- \(J_\varphi(K) \) is a compact subset of \(\mathbb{P}^1(K) \).

Goal: Look for an effective algorithm to determine whether \(J_\varphi(K) \) is empty or not.
Quadratic family

Low degrees \(d = 2, 3 \):

For the quadratic family, the situation is much simpler than the classical case \((K = \mathbb{C})\). Let \(\varphi_c(z) = z^2 + c \) and \(J_c(K) = J_{\varphi_c}(K) \).

Theorem (Benedetto-Briend-Perdry)

\[J_c(K) \neq \emptyset \text{ if and only if one of the following conditions holds.} \]

\begin{enumerate}
 \item \(p \neq 2 \): \(v(c) = -2k < 0 \);
 \item \(p = 2 \): \(v(4c) < 0 \) and \(1 - 4c \) is a square in \(K \).
\end{enumerate}

In this case \((J_c(K) \neq \emptyset)\), we have \(J_c(K) = J_c \) and the dynamics of \(\varphi \) on \(J_c(K) \) is topologically conjugated to the full (one-sided) 2-shift.

- We can rephrase the theorem as the following

\[J_c(K) \neq \emptyset \text{ if and only if the two (finite) fixed points of } \varphi_c \text{ are } K\text{-rational and repelling.} \]
Quadratic family

Low degrees $d = 2, 3$:

For the quadratic family, the situation is much simpler than the classical case ($K = \mathbb{C}$). Let $\varphi_c(z) = z^2 + c$ and $J_c(K) = J_{\varphi_c}(K)$.

Theorem (Benedetto-Briend-Perdry)

$J_c(K) \neq \emptyset$ if and only if one of the following conditions holds.

1. $p \neq 2$: $v(c) = -2k < 0$;
2. $p = 2$: $v(4c) < 0$ and $1 - 4c$ is a square in K.

In this case ($J_c(K) \neq \emptyset$), we have $J_c(K) = J_c$ and the dynamics of φ on $J_c(K)$ is topologically conjugated to the full (one-sided) 2-shift.

- We can rephrase the theorem as the following:

 $J_c(K) \neq \emptyset$ if and only if the two (finite) fixed points of φ_c are K-rational and repelling.
Quadratic family

Low degrees $d = 2, 3$:

For the quadratic family, the situation is much simpler than the classical case ($K = \mathbb{C}$). Let $\varphi_c(z) = z^2 + c$ and $J_c(K) = J_{\varphi_c}(K)$.

Theorem (Benedetto-Brient-Perdry)

$J_c(K) \neq \emptyset$ if and only if one of the following conditions holds.

1. $p \neq 2$: $v(c) = -2k < 0$;
2. $p = 2$: $v(4c) < 0$ and $1 - 4c$ is a square in K.

In this case ($J_c(K) \neq \emptyset$), we have $J_c(K) = J_c$ and the dynamics of φ on $J_c(K)$ is topologically conjugated to the full (one-sided) 2-shift.

- We can rephrase the theorem as the following:
 $J_c(K) \neq \emptyset$ if and only if the two (finite) fixed points of φ_c are K-rational and repelling.
Introduction
Non-Archimedean Julia set
Polynomials
Question

Quadratic family

Low degrees \(d = 2, 3 \):

For the quadratic family, the situation is much simpler than the classical case \((K = \mathbb{C})\). Let \(\varphi_c(z) = z^2 + c \) and \(\mathcal{J}_c(K) = \mathcal{J}_{\varphi_c}(K) \).

Theorem (Benedetto-Briend-Perdry)

\(\mathcal{J}_c(K) \neq \emptyset \) if and only if one of the following conditions holds.

1. \(p \neq 2 \): \(v(c) = -2k < 0 \);
2. \(p = 2 \): \(v(4c) < 0 \) and \(1 - 4c \) is a square in \(K \).

In this case \((\mathcal{J}_c(K) \neq \emptyset)\), we have \(\mathcal{J}_c(K) = \mathcal{J}_c \) and the dynamics of \(\varphi \) on \(\mathcal{J}_c(K) \) is topologically conjugated to the full (one-sided) 2-shift.

- We can rephrase the theorem as the following

\(\mathcal{J}_c(K) \neq \emptyset \) if and only if the two (finite) fixed points of \(\varphi_c \) are \(K \)-rational and repelling.
Introduction
Non-Archimedean Julia set
Polynomials
Question

Quadratic family

Low degrees \(d = 2, 3\):

For the quadratic family, the situation is much simpler than the classical case \((K = \mathbb{C})\). Let \(\varphi_c(z) = z^2 + c\) and \(J_c(K) = J_{\varphi_c}(K)\).

Theorem (Benedetto-Briend-Perdry)

\(J_c(K) \neq \emptyset\) if and only if one of the following conditions holds.

1. \(p \neq 2\): \(v(c) = -2k < 0\);
2. \(p = 2\): \(v(4c) < 0\) and \(1 - 4c\) is a square in \(K\).

In this case \((J_c(K) \neq \emptyset)\), we have \(J_c(K) = J_c\) and the dynamics of \(\varphi\) on \(J_c(K)\) is topologically conjugated to the full (one-sided) 2-shift.

- We can rephrase the theorem as the following
\(J_c(K) \neq \emptyset\) if and only if the two (finite) fixed points of \(\varphi_c\) are \(K\)-rational and repelling.
Cubic polynomials

For cubic polynomials criterion for the existence of K-rational Julia set is similar to the quadratic family.

Theorem (Briend-Hsia)

Let φ be a cubic polynomial. Then the K-rational Julia set $J_\varphi(K) \neq \emptyset$ if and only if one of the fixed point of φ is K-rational and repelling.
For cubic polynomials criterion for the existence of K-rational Julia set is similar to the quadratic family.

Theorem (Briend-Hsia)

Let φ be a cubic polynomial. Then the K-rational Julia set $\mathcal{J}_\varphi(K) \neq \emptyset$ if and only if one of the fixed point of φ is K-rational and repelling.
Remarks

- (B.-H.) The same criterion holds for the family of quadratic rational maps.
- Proofs show that $J_\varphi = \emptyset \implies \varphi$ has good reduction over \mathbb{C}_v.
- For $d = 2, 3$, the criterion for determining the existence of $J_\varphi (J_\varphi (K))$ is effective.
- Remark made by Silverman: the above criterion for rational maps follows from his theorem on the \mathbb{Z}-structure of the moduli space \mathcal{M}_d and that \mathcal{M}_2 is isomorphic to $\mathbb{A}^2_{\mathbb{Z}}$ as schemes over \mathbb{Z}.
Remarks

- (B.-H.) The same criterion holds for the family of quadratic rational maps.
- Proofs show that $\mathcal{J}_\varphi = \emptyset \implies \varphi$ has good reduction over \mathbb{C}_v.
- For $d = 2, 3$, the criterion for determining the existence of $\mathcal{J}_\varphi (\mathcal{J}_\varphi (K))$ is effective.
- Remark made by Silverman: the above criterion for rational maps follows from his theorem on the \mathbb{Z}-structure of the moduli space \mathcal{M}_d and that \mathcal{M}_2 is isomorphic to $\mathbb{A}^2_{\mathbb{Z}}$ as schemes over \mathbb{Z}.
• (B.-H.) The same criterion holds for the family of quadratic rational maps.
 Proofs show that $\mathcal{J}_\varphi = \emptyset \implies \varphi$ has good reduction over \mathbb{C}_v.
 For $d = 2, 3$, the criterion for determining the existence of $\mathcal{J}_\varphi (\mathcal{J}_\varphi (K))$ is effective.
 Remark made by Silverman: the above criterion for rational maps follows from his theorem on the \mathbb{Z}-structure of the moduli space \mathcal{M}_d and that \mathcal{M}_2 is isomorphic to $\mathbb{A}^2_\mathbb{Z}$ as schemes over \mathbb{Z}.
(B.-H.) The same criterion holds for the family of quadratic rational maps.

Proofs show that $\mathcal{J}_\varphi = \emptyset \implies \varphi$ has good reduction over \mathbb{C}_v.

For $d = 2, 3$, the criterion for determining the existence of $\mathcal{J}_\varphi (\mathcal{J}_\varphi(K))$ is effective.

Remark made by Silverman: the above criterion for rational maps follows from his theorem on the \mathbb{Z}-structure of the moduli space \mathcal{M}_d and that \mathcal{M}_2 is isomorphic to $\mathbb{A}^2_\mathbb{Z}$ as schemes over \mathbb{Z}.
(B.-H.) The same criterion holds for the family of quadratic rational maps.

Proofs show that $J_\varphi = \emptyset \implies \varphi$ has good reduction over \mathbb{C}_v.

For $d = 2, 3$, the criterion for determining the existence of $J_\varphi (J_\varphi(K))$ is effective.

Remark made by Silverman: the above criterion for rational maps follows from his theorem on the \mathbb{Z}-structure of the moduli space M_d and that M_2 is isomorphic to $\mathbb{A}^2_\mathbb{Z}$ as schemes over \mathbb{Z}.
(B.-H.) The same criterion holds for the family of quadratic rational maps.

Proofs show that $\mathcal{J}_\varphi = \emptyset \implies \varphi$ has good reduction over \mathbb{C}_v.

For $d = 2, 3$, the criterion for determining the existence of $\mathcal{J}_\varphi (\mathcal{J}_\varphi (K))$ is effective.

Remark made by Silverman: the above criterion for rational maps follows from his theorem on the \mathbb{Z}-structure of the moduli space \mathcal{M}_d and that \mathcal{M}_2 is isomorphic to $\mathbb{A}^2_{\mathbb{Z}}$ as schemes over \mathbb{Z}.
The following example of Benedetto shows that for polynomial maps the converse of Morton-Silverman’s result does not hold either.

Example (R. Benedetto)

(1) Let the residue characteristic p be odd. Let $a \in \mathbb{C}_v$ satisfy $-p/(2p+2) \leq v(a) < 0$. Let $\varphi(z) = z^2(z - a)^p$. Then, $J_\varphi = \emptyset$ and φ does not have good reduction over \mathbb{C}_v.

(2) For $p = 2$, the following example shares the same property as in (1)

$$\varphi(z) = z^4 + \frac{z^2}{\sqrt{2}} \in \mathbb{C}_2[z]$$
The following example of Benedetto shows that for polynomial maps the converse of Morton-Silverman’s result does not hold either.

Example (R. Benedetto)

1. Let the residue characteristic p be odd. Let $a \in \mathbb{C}_v$ satisfy $-p/(2p + 2) \leq v(a) < 0$. Let $\varphi(z) = z^2(z - a)^p$. Then, $J_\varphi = \emptyset$ and φ does not have good reduction over \mathbb{C}_v.

2. For $p = 2$, the following example shares the same property as in (1)

 $$\varphi(z) = z^4 + \frac{z^2}{\sqrt{2}} \in \mathbb{C}_2[z]$$
The following example of Benedetto shows that for polynomial maps the converse of Morton-Silverman’s result does not hold either.

Example (R. Benedetto)

(1) Let the residue characteristic p be odd. Let $a \in \mathbb{C}_v$ satisfy $-p/(2p + 2) \leq v(a) < 0$. Let $\varphi(z) = z^2(z - a)^p$. Then, $J_\varphi = \emptyset$ and φ does not have good reduction over \mathbb{C}_v.

(2) For $p = 2$, the following example shares the same property as in (1)

$$\varphi(z) = z^4 + \frac{z^2}{\sqrt{2}} \in \mathbb{C}_2[z]$$
The following example of Benedetto shows that for polynomial maps the converse of Morton-Silverman’s result does not hold either.

Example (R. Benedetto)

1. Let the residue characteristic p be odd. Let $a \in \mathbb{C}_v$ satisfy $-\frac{p}{2p+2} \leq v(a) < 0$. Let $\varphi(z) = z^2(z - a)^p$. Then, $J_\varphi = \emptyset$ and φ does not have good reduction over \mathbb{C}_v.

2. For $p = 2$, the following example shares the same property as in (1)

$$\varphi(z) = z^4 + \frac{z^2}{\sqrt{2}} \in \mathbb{C}_2[z]$$
The following example of Benedetto shows that for polynomial maps the converse of Morton-Silverman’s result does not hold either.

Example (R. Benedetto)

(1) Let the residue characteristic p be odd. Let $a \in \mathbb{C}_v$ satisfy $-p/(2p + 2) \leq v(a) < 0$. Let $\varphi(z) = z^2(z - a)^p$. Then, $J_\varphi = \emptyset$ and φ does not have good reduction over \mathbb{C}_v.

(2) For $p = 2$, the following example shares the same property as in (1)

$$\varphi(z) = z^4 + \frac{z^2}{\sqrt{2}} \in \mathbb{C}_2[z]$$
Higher degree polynomials

For polynomial with $\deg \varphi \geq 4$, the above criterion for $d = 2, 3$ does not hold in general.
Let $(p, d) \not\in \{(2, 4), (2, 5), (2, 7), (3, 5)\}$.
Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \geq 2$ and $p \nmid e_i$ (if $p = 0$, this condition is empty).
Let $n = \text{lcm}(\{e_i\})$.

Example $(d = e_0 + e_1)$

Let

$$\varphi(z) = \frac{1}{\pi^n} z^{e_0} (z - 1)^{e_1} + z.$$

Then, $\text{Fix}(\varphi) = \{0, 1, \infty\}$ and non-repelling.
$\mathcal{J}_\varphi(K) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.
Higher degree polynomials

For polynomial with \(\text{deg} \varphi \geq 4 \), the above criterion for \(d = 2, 3 \) does not hold in general.

Let \((p, d) \notin \{(2, 4), (2, 5), (2, 7), (3, 5)\} \).

Write \(d = e_0 + e_1 \) or \(e_0 + e_1 + e_2 \) such that \(e_i \geq 2 \) and \(p \nmid e_i \) (if \(p = 0 \), this condition is empty).

Let \(n = \text{lcm}\{e_i\} \).

Example \((d = e_0 + e_1)\)

Let

\[
\varphi(z) = \frac{1}{\pi^n} z^{e_0} (z - 1)^{e_1} + z.
\]

Then, \(\text{Fix}(\varphi) = \{0, 1, \infty\} \) and non-repelling.

\(J_\varphi(K) \neq \emptyset \) and the minimal period of the repelling periodic points is 2.
Higher degree polynomials

For polynomial with $\deg \varphi \geq 4$, the above criterion for $d = 2, 3$ does not hold in general.

Let $(p, d) \not\in \{(2, 4), (2, 5), (2, 7), (3, 5)\}$.

Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \geq 2$ and $p \nmid e_i$ (if $p = 0$, this condition is empty).

Let $n = \text{lcm}(\{e_i\})$.

Example ($d = e_0 + e_1$)

Let

$$\varphi(z) = \frac{1}{\pi n} z^{e_0} (z - 1)^{e_1} + z.$$

Then, $\text{Fix}(\varphi) = \{0, 1, \infty\}$ and non-repelling.

$\mathcal{J}_\varphi(K) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.
Higher degree polynomials

For polynomial with $\deg \varphi \geq 4$, the above criterion for $d = 2, 3$ does not hold in general. Let $(p, d) \not\in \{(2, 4), (2, 5), (2, 7), (3, 5)\}$. Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \geq 2$ and $p \nmid e_i$ (if $p = 0$, this condition is empty). Let $n = \text{lcm}(\{e_i\})$.

Example ($d = e_0 + e_1$)

Let

$$\varphi(z) = \frac{1}{\pi^n} z^{e_0} (z - 1)^{e_1} + z.$$

Then, $\text{Fix}(\varphi) = \{0, 1, \infty\}$ and non-repelling. $\mathcal{J}_\varphi(K) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.
Higher degree polynomials

For polynomial with $\deg \varphi \geq 4$, the above criterion for $d = 2, 3$ does not hold in general.

Let $(p, d) \not\in \{(2, 4), (2, 5), (2, 7), (3, 5)\}$.

Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \geq 2$ and $p \nmid e_i$ (if $p = 0$, this condition is empty).

Let $n = \text{lcm}(\{e_i\})$.

Example ($d = e_0 + e_1$)

Let

$$\varphi(z) = \frac{1}{\pi n} z^{e_0} (z - 1)^{e_1} + z.$$

Then, $\text{Fix}(\varphi) = \{0, 1, \infty\}$ and non-repelling.

$J_\varphi(K) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.
Higher degree polynomials

For polynomial with $\deg \varphi \geq 4$, the above criterion for $d = 2, 3$ does not hold in general. Let $(p, d) \not\in\{(2, 4), (2, 5), (2, 7), (3, 5)\}$. Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \geq 2$ and $p \nmid e_i$ (if $p = 0$, this condition is empty). Let $n = \text{lcm}(\{e_i\})$.

Example ($d = e_0 + e_1$)

Let

$$\varphi(z) = \frac{1}{\pi^n} z^{e_0} (z - 1)^{e_1} + z.$$

Then, $\text{Fix}(\varphi) = \{0, 1, \infty\}$ and non-repelling. $\mathcal{J}_\varphi(K) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.
Higher degree polynomials

For polynomial with $\deg \varphi \geq 4$, the above criterion for $d = 2, 3$ does not hold in general.
Let $(p, d) \notin \{(2, 4), (2, 5), (2, 7), (3, 5)\}$.
Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \geq 2$ and $p \nmid e_i$ (if $p = 0$, this condition is empty).
Let $n = \text{lcm}(\{e_i\})$.

Example ($d = e_0 + e_1$)

Let
\[
\varphi(z) = \frac{1}{\pi n} z^{e_0} (z - 1)^{e_1} + z.
\]

Then, $\text{Fix}(\varphi) = \{0, 1, \infty\}$ and non-repelling.
$\mathcal{J}_\varphi(K) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.
Higher degree polynomials

For polynomial with \(\deg \varphi \geq 4 \), the above criterion for \(d = 2, 3 \) does not hold in general.
Let \((p, d) \not\in \{ (2, 4), (2, 5), (2, 7), (3, 5) \} \).
Write \(d = e_0 + e_1 \) or \(e_0 + e_1 + e_2 \) such that \(e_i \geq 2 \) and \(p \nmid e_i \) (if \(p = 0 \), this condition is empty).
Let \(n = \text{lcm}(\{e_i\}) \).

Example \((d = e_0 + e_1)\)

Let

\[
\varphi(z) = \frac{1}{\pi^n} z^{e_0} (z - 1)^{e_1} + z.
\]

Then, \(\text{Fix}(\varphi) = \{0, 1, \infty\} \) and non-repelling.
\(J(\varphi)(K) \neq \emptyset \) and the minimal period of the repelling periodic points is 2.
Higher degree polynomials

For polynomial with $\deg \varphi \geq 4$, the above criterion for $d = 2, 3$ does not hold in general. Let $(p, d) \notin \{(2, 4), (2, 5), (2, 7), (3, 5)\}$.

Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \geq 2$ and $p \nmid e_i$ (if $p = 0$, this condition is empty).

Let $n = \text{lcm}(\{e_i\})$.

Example ($d = e_0 + e_1$)

Let

$$\varphi(z) = \frac{1}{\pi n} z^{e_0} (z - 1)^{e_1} + z.$$

Then, $\text{Fix}(\varphi) = \{0, 1, \infty\}$ and non-repelling. $\mathcal{J}_\varphi(K) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.
Consider $\sigma : \mathcal{P}_d \to \mathbb{A}^N$ where \mathcal{P}_d denotes the moduli space of polynomials of degree d. Let $[\varphi] \in \mathcal{P}_d(\mathbb{C}_v)$.

If $\mathcal{J}_\varphi = \emptyset$ then all periodic points are non-repelling.

Hence $\sigma([\varphi]) \in \mathbb{A}^N(\widehat{\mathcal{O}_K})$.

Question

Is it true that $\sigma^{-1}(\mathbb{A}^N(\widehat{\mathcal{O}_K}))$ consist of all polynomials φ with empty Julia set?
Integral points

Consider $\sigma : \mathcal{P}_d \to \mathbb{A}^N$ where \mathcal{P}_d denotes the moduli space of polynomials of degree d. Let $[\varphi] \in \mathcal{P}_d(\mathbb{C}_v)$.

If $\mathcal{J}_\varphi = \emptyset$ then all periodic points are non-repelling.

Hence $\sigma([\varphi]) \in \mathbb{A}^N(\widehat{\mathcal{O}_K})$.

Question

Is it true that $\sigma^{-1}(\mathbb{A}^N(\widehat{\mathcal{O}_K}))$ consist of all polynomials φ with empty Julia set?
Consider $\sigma : \mathcal{P}_d \rightarrow \mathbb{A}^N$ where \mathcal{P}_d denotes the moduli space of polynomials of degree d. Let $[\varphi] \in \mathcal{P}_d(\mathbb{C}_v)$. If $\mathcal{J}_\varphi = \emptyset$ then all periodic points are non-repelling. Hence $\sigma([\varphi]) \in \mathbb{A}^N(\hat{\mathcal{O}}_K)$.

Question

Is it true that $\sigma^{-1}(\mathbb{A}^N(\hat{\mathcal{O}}_K))$ consist of all polynomials φ with empty Julia set?
Consider $\sigma : P_d \to A^N$ where P_d denotes the moduli space of polynomials of degree d. Let $[\varphi] \in P_d(\mathbb{C}_v)$. If $J_\varphi = \emptyset$ then all periodic points are non-repelling. Hence $\sigma([\varphi]) \in A^N(\widehat{O_K})$.

Question

Is it true that $\sigma^{-1}(A^N(\widehat{O_K}))$ consist of all polynomials φ with empty Julia set?
Consider $\sigma : \mathcal{P}_d \to \mathbb{A}^N$ where \mathcal{P}_d denotes the moduli space of polynomials of degree d. Let $[\varphi] \in \mathcal{P}_d(\mathbb{C}_v)$. If $\mathcal{J}_\varphi = \emptyset$ then all periodic points are non-repelling. Hence $\sigma([\varphi]) \in \mathbb{A}^N(\widehat{\mathcal{O}_K})$.

Question

Is it true that $\sigma^{-1}(\mathbb{A}^N(\widehat{\mathcal{O}_K}))$ consist of all polynomials φ with empty Julia set?
We believe the following is true.

Conjecture

Let $\varphi \in K[z]$ be of degree d. There exist a constant $N = N(p, d)$ such that $J_\varphi = \emptyset$ if and only if all the periodic points of period r with $1 \leq r \leq N$ are non-repelling.
We believe the following is true.

Conjecture

Let $\varphi \in K[z]$ be of degree d. There exist a constant $N = N(p, d)$ such that $J_\varphi = \emptyset$ if and only if all the periodic points of period r with $1 \leq r \leq N$ are non-repelling.
We believe the following is true.

Conjecture

Let $\varphi \in K[z]$ be of degree d. There exist a constant $N = N(p, d)$ such that $J_\varphi = \emptyset$ if and only if all the periodic points of period r with $1 \leq r \leq N$ are non-repelling.