On approximating non-Archimedean Julia sets

joint work with Jean-Yves Briend

Liang-Chung Hsia National Taiwan Normal University

Complex and *p*-adic Dynamics at ICERM February 13-17, 2012.

2 Non-Archimedean Julia set

3 Polynomials

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

K : a field complete with respect to absolute value $|\cdot|$

 $\varphi : \mathbb{P}^1 \to \mathbb{P}^1$ of degree $d \ge 2$ over K.

 $\mathcal{J}_{\varphi}(K) = \text{the } K\text{-rational Julia set of } \varphi$ = the subset of points in $\mathbb{P}^{1}(K)$ where $\{\varphi^{n}\}_{n\geq 1}$ is not equicontinuous.

Problem

To compute/visualize $\mathcal{J}_{\varphi}(K)$.

In general this is a difficult problem in the case where $K = \mathbb{C}.$

Theorem (Braverman-Yampolsky)

There exist a complex number c such that the (complex) Julia set of the quadratic polynomial $\varphi_c(z) = z^2 + c$ is not computable.

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

크

K : a field complete with respect to absolute value $|\cdot|$

 $\varphi : \mathbb{P}^1 \to \mathbb{P}^1$ of degree $d \ge 2$ over K.

 $\mathcal{J}_{\varphi}(K) = \text{the } K\text{-rational Julia set of } \varphi \\ = \text{the subset of points in } \mathbb{P}^{1}(K) \text{ where } \{\varphi^{n}\}_{n \geq 1} \\ \text{ is not equicontinuous.}$

Problem

To compute/visualize $\mathcal{J}_{\varphi}(K)$.

In general this is a difficult problem in the case where $K=\mathbb{C}.$

Theorem (Braverman-Yampolsky)

There exist a complex number c such that the (complex) Julia set of the quadratic polynomial $\varphi_c(z) = z^2 + c$ is not computable.

・ロン ・回 と ・ ヨン ・ ヨン

K : a field complete with respect to absolute value $|\cdot|$

 $\varphi : \mathbb{P}^1 \to \mathbb{P}^1$ of degree $d \ge 2$ over K.

 $\mathcal{J}_{\varphi}(K) = \text{the } K\text{-rational Julia set of } \varphi \\ = \text{the subset of points in } \mathbb{P}^{1}(K) \text{ where } \{\varphi^{n}\}_{n \geq 1} \\ \text{ is not equicontinuous.}$

Problem

To compute/visualize $\mathcal{J}_{\varphi}(K)$.

In general this is a difficult problem in the case where $K=\mathbb{C}.$

Theorem (Braverman-Yampolsky)

There exist a complex number c such that the (complex) Julia set of the quadratic polynomial $\varphi_c(z) = z^2 + c$ is not computable.

K : a field complete with respect to absolute value $|\cdot|$

 $\varphi : \mathbb{P}^1 \to \mathbb{P}^1$ of degree $d \ge 2$ over K.

 $\mathcal{J}_{\varphi}(K) = \text{the } K\text{-rational Julia set of } \varphi \\ = \text{the subset of points in } \mathbb{P}^{1}(K) \text{ where } \{\varphi^{n}\}_{n \geq 1} \\ \text{ is not equicontinuous.}$

Problem

To compute/visualize $\mathcal{J}_{\varphi}(K)$.

In general this is a difficult problem in the case where $K = \mathbb{C}$.

Theorem (Braverman-Yampolsky)

There exist a complex number c such that the (complex) Julia set of the quadratic polynomial $\varphi_c(z) = z^2 + c$ is not computable.

K : a field complete with respect to absolute value $|\cdot|$

 $\varphi : \mathbb{P}^1 \to \mathbb{P}^1$ of degree $d \ge 2$ over K.

$$\mathcal{J}_{\varphi}(K) = \text{the } K\text{-rational Julia set of } \varphi \\ = \text{the subset of points in } \mathbb{P}^{1}(K) \text{ where } \{\varphi^{n}\}_{n \geq 1} \\ \text{ is not equicontinuous.}$$

Problem

To compute/visualize $\mathcal{J}_{\varphi}(K)$.

In general this is a difficult problem in the case where $K = \mathbb{C}$.

Theorem (Braverman-Yampolsky)

There exist a complex number c such that the (complex) Julia set of the quadratic polynomial $\varphi_c(z) = z^2 + c$ is not computable.

Notation for non-Archimedean field

- K a discretely valued field,
- $v : K^* \twoheadrightarrow \mathbb{Z}$ valuation on K,
- $|x| = a^{-v(x)}$ for some a > 1,
- \mathcal{O}_K the ring of integers of K,
 - π a uniformizer such that $\mathfrak{M}_{K} = \pi \mathcal{O}_{K}$,
 - $\mathcal{K} = \mathcal{O}_{\mathcal{K}}/\mathfrak{M}_{\mathcal{K}}$ assumed to be algebraically closed,
 - $p = \operatorname{Char}(K) \ge 0,$
- \mathbb{C}_{v} completion of an algebraic closure of K,
- $\widehat{\mathcal{O}}_{v}$ the ring of integers of \mathbb{C}_{v} .

Notation for non-Archimedean field

K a discretely valued field,

- $v : K^* \rightarrow \mathbb{Z}$ valuation on K,
- $|x| = a^{-v(x)}$ for some a > 1,
- \mathcal{O}_K the ring of integers of K,
 - π a uniformizer such that $\mathfrak{M}_{\mathcal{K}} = \pi \mathcal{O}_{\mathcal{K}},$
 - $\mathcal{K} = \mathcal{O}_{\mathcal{K}}/\mathfrak{M}_{\mathcal{K}}$ assumed to be algebraically closed,
 - $p = \operatorname{Char}(\widetilde{K}) \geq 0,$
- \mathbb{C}_{v} completion of an algebraic closure of K,
- $\widehat{\mathcal{O}}_{v}$ the ring of integers of \mathbb{C}_{v} .

Notation for non-Archimedean field

- K a discretely valued field,
- $v : K^* \twoheadrightarrow \mathbb{Z}$ valuation on K,
- $|x| = a^{-v(x)}$ for some a > 1,
- $\mathcal{O}_{\mathcal{K}}$ the ring of integers of \mathcal{K} ,
 - π a uniformizer such that $\mathfrak{M}_{K}=\pi\mathcal{O}_{K},$
 - $\overline{K} = \mathcal{O}_K / \mathfrak{M}_K$ assumed to be algebraically closed,
 - $p = \operatorname{Char}(\widetilde{K}) \geq 0,$
- \mathbb{C}_{v} completion of an algebraic closure of K,
- $\widehat{\mathcal{O}}_{v}$ the ring of integers of \mathbb{C}_{v} .

Notation for non-Archimedean field

- K a discretely valued field,
- $v : K^* \twoheadrightarrow \mathbb{Z}$ valuation on K,
- $|x| = a^{-\nu(x)}$ for some a > 1,
- \mathcal{O}_K the ring of integers of K,
 - π a uniformizer such that $\mathfrak{M}_{K} = \pi \mathcal{O}_{K},$
 - $\mathcal{K} = \mathcal{O}_{\mathcal{K}}/\mathfrak{M}_{\mathcal{K}}$ assumed to be algebraically closed,
 - $p = \operatorname{Char}(\widetilde{K}) \geq 0,$
- \mathbb{C}_{v} completion of an algebraic closure of K,
- $\widehat{\mathcal{O}}_{v}$ the ring of integers of \mathbb{C}_{v} .

Notation for non-Archimedean field

- K a discretely valued field,
- $v : K^* \twoheadrightarrow \mathbb{Z}$ valuation on K,
- $|x| = a^{-\nu(x)}$ for some a > 1,

 $\mathcal{O}_{\mathcal{K}}$ the ring of integers of \mathcal{K} ,

- π a uniformizer such that $\mathfrak{M}_{\mathcal{K}}=\pi\mathcal{O}_{\mathcal{K}},$
- ${\cal K}\,={\cal O}_{\cal K}/{\mathfrak M}_{\cal K}$ assumed to be algebraically closed,
- $p = \operatorname{Char}(K) \ge 0,$
- \mathbb{C}_{v} completion of an algebraic closure of K,
- $\widehat{\mathcal{O}}_{v}$ the ring of integers of \mathbb{C}_{v} .

() < </p>

Notation for non-Archimedean field

- K a discretely valued field,
- $v : K^* \twoheadrightarrow \mathbb{Z}$ valuation on K,
- $|x| = a^{-\nu(x)}$ for some a > 1,
- \mathcal{O}_{K} the ring of integers of K,
 - $\pi\,$ a uniformizer such that $\mathfrak{M}_{\mathcal{K}}=\pi\mathcal{O}_{\mathcal{K}},$
 - $K_{-}=\mathcal{O}_{K}/\mathfrak{M}_{K}$ assumed to be algebraically closed,
 - $p = \operatorname{Char}(\widetilde{K}) \geq 0,$
 - \mathbb{C}_{v} completion of an algebraic closure of K,
- $\widehat{\mathcal{O}}_{v}$ the ring of integers of \mathbb{C}_{v} .

() < </p>

Notation for non-Archimedean field

- K a discretely valued field,
- $v : K^* \twoheadrightarrow \mathbb{Z}$ valuation on K,
- $|x| = a^{-\nu(x)}$ for some a > 1,

 $\mathcal{O}_{\mathcal{K}}$ the ring of integers of \mathcal{K} ,

- π a uniformizer such that $\mathfrak{M}_{\mathcal{K}} = \pi \mathcal{O}_{\mathcal{K}},$
- $\overline{K} = \mathcal{O}_K / \mathfrak{M}_K$ assumed to be algebraically closed,

 $p = \operatorname{Char}(K) \ge 0,$

 \mathbb{C}_{v} completion of an algebraic closure of K,

 $\widehat{\mathcal{O}}_{v}$ the ring of integers of \mathbb{C}_{v} .

・ロン ・回 と ・ヨン ・ヨン

Notation for non-Archimedean field

K a discretely valued field,

$$v : K^* \twoheadrightarrow \mathbb{Z}$$
 valuation on K ,

$$|x|\,=\,a^{-\,
u(x)}$$
 for some $a>1$,

 $\mathcal{O}_{\mathcal{K}}$ the ring of integers of \mathcal{K} ,

 π a uniformizer such that $\mathfrak{M}_{\mathcal{K}} = \pi \mathcal{O}_{\mathcal{K}}$,

$$\mathcal{K} = \mathcal{O}_\mathcal{K}/\mathfrak{M}_\mathcal{K}$$
 assumed to be algebraically closed,

$$p = \operatorname{Char}(\widetilde{K}) \ge 0,$$

 \mathbb{C}_v completion of an algebraic closure of K, $\widehat{\mathcal{O}}_v$ the ring of integers of \mathbb{C}_v .

・ロト ・ 同ト ・ ヨト ・ ヨト

Notation for non-Archimedean field

K a discretely valued field,

$$v : K^* \twoheadrightarrow \mathbb{Z}$$
 valuation on K ,

$$|x|\,=\,a^{-\,
u(x)}$$
 for some $a>1$,

 $\mathcal{O}_{\mathcal{K}}$ the ring of integers of \mathcal{K} ,

 π a uniformizer such that $\mathfrak{M}_{\mathcal{K}} = \pi \mathcal{O}_{\mathcal{K}}$,

$$\mathcal{K} = \mathcal{O}_\mathcal{K}/\mathfrak{M}_\mathcal{K}$$
 assumed to be algebraically closed,

$$p = \operatorname{Char}(\widetilde{K}) \ge 0,$$

 \mathbb{C}_{v} completion of an algebraic closure of K,

 \mathcal{O}_{v} the ring of integers of \mathbb{C}_{v} .

・ロト ・ 同ト ・ ヨト ・ ヨト

Notation for non-Archimedean field

K a discretely valued field,

$$v : K^* \twoheadrightarrow \mathbb{Z}$$
 valuation on K ,

$$|x|\,=\,a^{-\,
u(x)}$$
 for some $a>1$,

 $\mathcal{O}_{\mathcal{K}}$ the ring of integers of \mathcal{K} ,

 π a uniformizer such that $\mathfrak{M}_{\mathcal{K}} = \pi \mathcal{O}_{\mathcal{K}}$,

$$\mathcal{K} \,=\, \mathcal{O}_\mathcal{K}/\mathfrak{M}_\mathcal{K}$$
 assumed to be algebraically closed,

$$p = \operatorname{Char}(\widetilde{K}) \geq 0,$$

- \mathbb{C}_{v} completion of an algebraic closure of K,
- $\widehat{\mathcal{O}}_{v}$ the ring of integers of \mathbb{C}_{v} .

A (1) > A (2) > A (2) >

Reduction

Write $\varphi(x, y) = [f(x, y), g(x, y)]$ with $f, g \in \mathcal{O}_{\mathcal{K}}[x, y]$, homogeneous of degree d with at least one coefficient being a unit. Set $\tilde{\varphi} = [\tilde{f}, \tilde{g}]$.

Good reduction: φ is said to have good reduction (over \mathbb{C}_{ν}) if there exists a $\gamma \in \mathsf{PGL}(2, \mathbb{C}_{\nu})$ such that

$$\varphi^{\gamma}(z) = \left(\gamma^{-1} \circ \varphi \circ \gamma\right)(z) = \frac{f(z)}{g(z)}, \ f, g \in \widehat{\mathcal{O}}_{\nu}[z]$$

satisfying

 $v(\operatorname{\mathsf{Res}}(\varphi)) = 0.$

Reduction

Write $\varphi(x, y) = [f(x, y), g(x, y)]$ with $f, g \in \mathcal{O}_{\mathcal{K}}[x, y]$, homogeneous of degree d with at least one coefficient being a unit. Set $\tilde{\varphi} = [\tilde{f}, \tilde{g}]$. **Good reduction**: φ is said to have good reduction (over \mathbb{C}_{γ}) if

there exists a $\gamma \in \mathsf{PGL}(2,\mathbb{C}_{\nu})$ such that

$$arphi^{\gamma}(z) = \left(\gamma^{-1}\circarphi\circ\gamma
ight)(z) = rac{f(z)}{g(z)}, \; f,g\in\widehat{\mathcal{O}}_{v}[z]$$

satisfying

 $v(\mathsf{Res}(\varphi)) = 0.$

Reduction

Write $\varphi(x, y) = [f(x, y), g(x, y)]$ with $f, g \in \mathcal{O}_{\mathcal{K}}[x, y]$, homogeneous of degree d with at least one coefficient being a unit. Set $\tilde{\varphi} = [\tilde{f}, \tilde{g}]$. **Good reduction**: φ is said to have good reduction (over \mathbb{C}_{γ}) if

there exists a $\gamma \in \mathsf{PGL}(2,\mathbb{C}_{v})$ such that

$$arphi^{\gamma}(z) = \left(\gamma^{-1}\circarphi\circ\gamma
ight)(z) = rac{f(z)}{g(z)}, \; f,g\in\widehat{\mathcal{O}}_{v}[z]$$

satisfying

 $v(\mathsf{Res}(\varphi)) = 0.$

Reduction and Julia set

Although it's not explicitly stated, P. Morton and J. Silverman's work shows that:

Theorem (Morton-Silverman)

If φ has good reduction over \mathbb{C}_{v} then $\mathcal{J}_{\varphi} = \mathcal{J}_{\varphi}(\mathbb{C}_{v})$ is empty.

Remark (Properties of Julia set)

(1) $\mathcal{J}_{\varphi} \subset \overline{\bigcup_{m} \operatorname{Per}_{m}(\varphi)}$ (closure in $\mathbb{P}^{1}(\mathbb{C}_{p})$). (2) \mathcal{J}_{φ} may not be compact in $\mathbb{P}^{1}(\mathbb{C}_{p})$. (3) A periodic point for φ is in the Julia set \mathcal{J}_{φ} if and only if it is a repelling periodic point.

Reduction and Julia set

Although it's not explicitly stated, P. Morton and J. Silverman's work shows that:

Theorem (Morton-Silverman)

If φ has good reduction over \mathbb{C}_{v} then $\mathcal{J}_{\varphi} = \mathcal{J}_{\varphi}(\mathbb{C}_{v})$ is empty.

Remark (Properties of Julia set)

(1) $\mathcal{J}_{\varphi} \subset \overline{\bigcup_{m} \operatorname{Per}_{m}(\varphi)}$ (closure in $\mathbb{P}^{1}(\mathbb{C}_{p})$). (2) \mathcal{J}_{φ} may not be compact in $\mathbb{P}^{1}(\mathbb{C}_{p})$. (3) A periodic point for φ is in the Julia set \mathcal{J}_{φ} if and only if it is a repelling periodic point.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ト

Reduction and Julia set

Although it's not explicitly stated, P. Morton and J. Silverman's work shows that:

Theorem (Morton-Silverman)

If φ has good reduction over \mathbb{C}_v then $\mathcal{J}_{\varphi} = \mathcal{J}_{\varphi}(\mathbb{C}_v)$ is empty.

Remark (Properties of Julia set)

(1) $\mathcal{J}_{\varphi} \subset \overline{\cup_m \operatorname{Per}_m(\varphi)}$ (closure in $\mathbb{P}^1(\mathbb{C}_p)$). (2) \mathcal{J}_{φ} may not be compact in $\mathbb{P}^1(\mathbb{C}_p)$. (3) A periodic point for φ is in the Julia set \mathcal{J}_{φ} if and only if it is a repelling periodic point.

Reduction and Julia set

Although it's not explicitly stated, P. Morton and J. Silverman's work shows that:

Theorem (Morton-Silverman)

If φ has good reduction over \mathbb{C}_{v} then $\mathcal{J}_{\varphi} = \mathcal{J}_{\varphi}(\mathbb{C}_{v})$ is empty.

Remark (Properties of Julia set)

(1) $\mathcal{J}_{\varphi} \subset \overline{\bigcup_{m} \operatorname{Per}_{m}(\varphi)}$ (closure in $\mathbb{P}^{1}(\mathbb{C}_{p})$). (2) \mathcal{J}_{φ} may not be compact in $\mathbb{P}^{1}(\mathbb{C}_{p})$. (3) A periodic point for φ is in the Julia set \mathcal{J}_{φ} if and only if it is a repelling periodic point.

Reduction and Julia set

Although it's not explicitly stated, P. Morton and J. Silverman's work shows that:

Theorem (Morton-Silverman)

If φ has good reduction over \mathbb{C}_v then $\mathcal{J}_{\varphi} = \mathcal{J}_{\varphi}(\mathbb{C}_v)$ is empty.

Remark (Properties of Julia set)

(1) $\mathcal{J}_{\varphi} \subset \overline{\bigcup_m \operatorname{Per}_m(\varphi)}$ (closure in $\mathbb{P}^1(\mathbb{C}_p)$). (2) \mathcal{J}_{φ} may not be compact in $\mathbb{P}^1(\mathbb{C}_p)$. (3) A periodic point for φ is in the Julia set \mathcal{J}_{φ} if and only if it is a repelling periodic point.

イロト イヨト イヨト イヨト

• $\mathcal{J}_{\varphi}(K) \subset \mathbb{P}^{1}(K) \subset \mathbb{P}^{1}_{\text{Berk}}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(K)$ as a subtree of $\mathbb{P}^{1}_{\text{Berk}}$. Julia set and Indeterminacies:

X a smooth separated scheme of finite type over \mathcal{O}_K , satisfying (i) the generic fiber $X_\eta \simeq \mathbb{P}^1_K$; and (ii) $\mathbb{P}^1(K) \simeq X(\mathcal{O}_K)$.

In this talk, we call such an X a model of \mathbb{P}^1_K . • Let ϕ denote the extension of ϕ on X. Then, in gene

a rational map

$$\phi: X \dashrightarrow X.$$

• $\mathcal{J}_{\varphi}(\mathcal{K}) \subset \mathbb{P}^{1}(\mathcal{K}) \subset \mathbb{P}^{1}_{Berk}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(\mathcal{K})$ as a subtree of \mathbb{P}^{1}_{Berk} . Julia set and Indeterminacies:

X a smooth separated scheme of finite type over \mathcal{O}_K , satisfying (i) the generic fiber $X_\eta \simeq \mathbb{P}^1_K$; and (ii) $\mathbb{P}^1(K) \simeq X(\mathcal{O}_K)$.

In this talk, we call such an X a model of \mathbb{P}^{1}_{K} . • Let ϕ denote the extension of φ on X. Then, in general we ge a rational map

$$\phi: X \dashrightarrow X.$$

• $\mathcal{J}_{\varphi}(K) \subset \mathbb{P}^{1}(K) \subset \mathbf{P}^{1}_{\operatorname{Berk}}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(K)$ as a subtree of $\mathbf{P}^{1}_{\operatorname{Berk}}$.

Julia set and Indeterminacies:

X a smooth separated scheme of finite type over \mathcal{O}_K , satisfying (i) the generic fiber $X_\eta \simeq \mathbb{P}^1_K$; and (ii) $\mathbb{P}^1(K) \simeq X(\mathcal{O}_K)$.

In this talk, we call such an X a model of \mathbb{P}^1_K . • Let ϕ denote the extension of φ on X. Then, in general

 $\phi: X \dashrightarrow X.$

・ロン ・ ア・ ・ ヨン ・ ヨン

• $\mathcal{J}_{\varphi}(\mathcal{K}) \subset \mathbb{P}^{1}(\mathcal{K}) \subset \mathbf{P}^{1}_{\operatorname{Berk}}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(\mathcal{K})$ as a subtree of $\mathbf{P}^{1}_{\operatorname{Berk}}$.

Julia set and Indeterminacies:

X a smooth separated scheme of finite type over \mathcal{O}_K , satisfying (i) the generic fiber $X_\eta \simeq \mathbb{P}^1_K$; and (ii) $\mathbb{P}^1(K) \simeq X(\mathcal{O}_K)$.

In this talk, we call such an X a model of \mathbb{P}^{1}_{K} . • Let ϕ denote the extension of φ on X. Then, in general we get a rational map

$$\phi: X \dashrightarrow X.$$

・ロン ・回 と ・ ヨン ・ ヨン

• $\mathcal{J}_{\varphi}(\mathcal{K}) \subset \mathbb{P}^{1}(\mathcal{K}) \subset \mathbf{P}^{1}_{\operatorname{Berk}}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(\mathcal{K})$ as a subtree of $\mathbf{P}^{1}_{\operatorname{Berk}}$.

Julia set and Indeterminacies:

X a smooth separated scheme of finite type over \mathcal{O}_K , satisfying (i) the generic fiber $X_\eta \simeq \mathbb{P}^1_K$; and (ii) $\mathbb{P}^1(K) \simeq X(\mathcal{O}_K)$. In this talk, we call such an X a model of \mathbb{P}^1_K .

• Let ϕ denote the extension of φ on X. Then, in general we get a rational map

$$\phi: X \dashrightarrow X.$$

• $\mathcal{J}_{\varphi}(\mathcal{K}) \subset \mathbb{P}^{1}(\mathcal{K}) \subset \mathbf{P}^{1}_{\operatorname{Berk}}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(\mathcal{K})$ as a subtree of $\mathbf{P}^{1}_{\operatorname{Berk}}$.

Julia set and Indeterminacies:

X a smooth separated scheme of finite type over \mathcal{O}_K , satisfying (i) the generic fiber $X_\eta \simeq \mathbb{P}^1_K$; and (ii) $\mathbb{P}^1(K) \simeq X(\mathcal{O}_K)$.

In this talk, we call such an X a model of \mathbb{P}^1_K .

 Let φ denote the extension of φ on X. Then, in general we get a rational map

$$\phi: X \dashrightarrow X.$$

• $\mathcal{J}_{\varphi}(\mathcal{K}) \subset \mathbb{P}^{1}(\mathcal{K}) \subset \mathbf{P}^{1}_{\operatorname{Berk}}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(\mathcal{K})$ as a subtree of $\mathbf{P}^{1}_{\operatorname{Berk}}$.

Julia set and Indeterminacies:

X a smooth separated scheme of finite type over $\mathcal{O}_{\mathcal{K}}$, satisfying (i) the generic fiber $X_{\eta} \simeq \mathbb{P}^{1}_{\mathcal{K}}$; and (ii) $\mathbb{P}^{1}(\mathcal{K}) \simeq X(\mathcal{O}_{\mathcal{K}})$.

In this talk, we call such an X a model of \mathbb{P}^1_K .

• Let ϕ denote the extension of φ on X. Then, in general we get a rational map

$$\phi: X \dashrightarrow X.$$

• $\mathcal{J}_{\varphi}(\mathcal{K}) \subset \mathbb{P}^{1}(\mathcal{K}) \subset \mathbf{P}^{1}_{\operatorname{Berk}}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(\mathcal{K})$ as a subtree of $\mathbf{P}^{1}_{\operatorname{Berk}}$.

Julia set and Indeterminacies:

X a smooth separated scheme of finite type over $\mathcal{O}_{\mathcal{K}}$, satisfying (i) the generic fiber $X_{\eta} \simeq \mathbb{P}^{1}_{\mathcal{K}}$; and (ii) $\mathbb{P}^{1}(\mathcal{K}) \simeq X(\mathcal{O}_{\mathcal{K}})$.

In this talk, we call such an X a model of \mathbb{P}^1_K .

• Let ϕ denote the extension of φ on X. Then, in general we get a rational map

$$\phi: X \dashrightarrow X.$$

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

• $\mathcal{J}_{\varphi}(\mathcal{K}) \subset \mathbb{P}^{1}(\mathcal{K}) \subset \mathbf{P}^{1}_{\operatorname{Berk}}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(\mathcal{K})$ as a subtree of $\mathbf{P}^{1}_{\operatorname{Berk}}$.

Julia set and Indeterminacies:

X a smooth separated scheme of finite type over $\mathcal{O}_{\mathcal{K}}$, satisfying (i) the generic fiber $X_{\eta} \simeq \mathbb{P}^{1}_{\mathcal{K}}$; and (ii) $\mathbb{P}^{1}(\mathcal{K}) \simeq X(\mathcal{O}_{\mathcal{K}})$.

In this talk, we call such an X a model of \mathbb{P}^1_K .

• Let ϕ denote the extension of φ on X. Then, in general we get a rational map

$$\phi: X \dashrightarrow X.$$

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Let X denote the special fiber of X and let $Q \in \mathbb{P}^1(K)$. $\overline{Q} =$ the closure of Q in X.

Q = the closed point where \overline{Q} meets with X.

Theorem

Assume that $\mathcal{J}_{\varphi}(K)$ is non-empty and let $Q \in \mathcal{J}_{\varphi}(K)$. Then $\{\widetilde{\varphi^n(Q)} \mid n \ge 1\}$ has non-empty intersection with the set of indeterminacies of ϕ .

Remark

(1) If there is a model X of \mathbb{P}^1_K such that the extension ϕ is a morphism on X, then $\mathcal{J}_{\varphi}(K)$ is empty. (2) Such a model is called a *weak Néron model* for the pair $(\mathbb{P}^1_K, \varphi)$ by Call and Silverman.

Let X denote the special fiber of X and let $Q \in \mathbb{P}^1(K)$.

- Q = the closure of Q in X.
- Q = the closed point where \overline{Q} meets with X.

Theorem

Assume that $\mathcal{J}_{\varphi}(K)$ is non-empty and let $Q \in \mathcal{J}_{\varphi}(K)$. Then $\{\widetilde{\varphi^n(Q)} \mid n \ge 1\}$ has non-empty intersection with the set of indeterminacies of ϕ .

Remark

(1) If there is a model X of \mathbb{P}^1_K such that the extension ϕ is a morphism on X, then $\mathcal{J}_{\varphi}(K)$ is empty. (2) Such a model is called a *weak Néron model* for the pair $(\mathbb{P}^1_K, \varphi)$ by Call and Silverman.

Let \widetilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^1(K)$. $\overline{Q} =$ the closure of Q in X.

Q = the closed point where \overline{Q} meets with X.

Theorem

Assume that $\mathcal{J}_{\varphi}(K)$ is non-empty and let $Q \in \mathcal{J}_{\varphi}(K)$. Then $\{\widetilde{\varphi^n(Q)} \mid n \ge 1\}$ has non-empty intersection with the set of indeterminacies of ϕ .

Remark

(1) If there is a model X of P¹_K such that the extension φ is a morphism on X, then J_φ(K) is empty.
 (2) Such a model is called a *weak Néron model* for the pair (P¹_K, φ) by Call and Silverman.

Let \widetilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^1(K)$. $\overline{Q} =$ the closure of Q in X.

 $\widetilde{Q}=$ the closed point where \overline{Q} meets with $\widetilde{X}.$

Fheorem

Assume that $\mathcal{J}_{\varphi}(K)$ is non-empty and let $Q \in \mathcal{J}_{\varphi}(K)$. Then $\{\widetilde{\varphi^n(Q)} \mid n \ge 1\}$ has non-empty intersection with the set of indeterminacies of ϕ .

Remark

(1) If there is a model X of \mathbb{P}^1_K such that the extension ϕ is a morphism on X, then $\mathcal{J}_{\varphi}(K)$ is empty. (2) Such a model is called a *weak Néron model* for the pair $(\mathbb{P}^1_K, \varphi)$ by Call and Silverman.

Let \widetilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^1(K)$. $\overline{Q} =$ the closure of Q in X.

 \widetilde{Q} = the closed point where \overline{Q} meets with \widetilde{X} .

Theorem

Assume that $\mathcal{J}_{\varphi}(K)$ is non-empty and let $Q \in \mathcal{J}_{\varphi}(K)$. Then $\{\widetilde{\varphi^n(Q)} \mid n \ge 1\}$ has non-empty intersection with the set of indeterminacies of ϕ .

Remark

(1) If there is a model X of \mathbb{P}^1_K such that the extension ϕ is a morphism on X, then $\mathcal{J}_{\varphi}(K)$ is empty.

(2) Such a model is called a *weak Néron model* for the pair $(\mathbb{P}^1_K, \varphi)$ by Call and Silverman.

Let \widetilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^1(K)$. $\overline{Q} =$ the closure of Q in X.

 \widetilde{Q} = the closed point where \overline{Q} meets with \widetilde{X} .

Theorem

Assume that $\mathcal{J}_{\varphi}(K)$ is non-empty and let $Q \in \mathcal{J}_{\varphi}(K)$. Then $\{\widetilde{\varphi^n(Q)} \mid n \ge 1\}$ has non-empty intersection with the set of indeterminacies of ϕ .

Remark

(1) If there is a model X of \mathbb{P}^1_K such that the extension ϕ is a morphism on X, then $\mathcal{J}_{\varphi}(K)$ is empty.

(2) Such a model is called a *weak Néron model* for the pair $(\mathbb{P}^1_{\kappa}, \varphi)$ by Call and Silverman.

Let \widetilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^1(K)$. $\overline{Q} =$ the closure of Q in X.

 \widetilde{Q} = the closed point where \overline{Q} meets with \widetilde{X} .

Theorem

Assume that $\mathcal{J}_{\varphi}(K)$ is non-empty and let $Q \in \mathcal{J}_{\varphi}(K)$. Then $\{\widetilde{\varphi^n(Q)} \mid n \ge 1\}$ has non-empty intersection with the set of indeterminacies of ϕ .

Remark

(1) If there is a model X of \mathbb{P}^1_K such that the extension ϕ is a morphism on X, then $\mathcal{J}_{\varphi}(K)$ is empty.

(2) Such a model is called a *weak Néron model* for the pair $(\mathbb{P}^1_K, \varphi)$ by Call and Silverman.

Let \widetilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^1(K)$. $\overline{Q} =$ the closure of Q in X.

 \widetilde{Q} = the closed point where \overline{Q} meets with \widetilde{X} .

Theorem

Assume that $\mathcal{J}_{\varphi}(K)$ is non-empty and let $Q \in \mathcal{J}_{\varphi}(K)$. Then $\{\widetilde{\varphi^n(Q)} \mid n \ge 1\}$ has non-empty intersection with the set of indeterminacies of ϕ .

Remark

(1) If there is a model X of \mathbb{P}^1_K such that the extension ϕ is a morphism on X, then $\mathcal{J}_{\varphi}(K)$ is empty.

(2) Such a model is called a *weak Néron model* for the pair $(\mathbb{P}^{1}_{K}, \varphi)$ by Call and Silverman.

An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi: X \dashrightarrow X.$$

By blowing up the indeterminacies of ϕ we can find a model X' and a birational morphism $\tau : X' \to X$ such that ϕ is lifted to a morphism

$$\widehat{\phi}: X' \to X$$

such that we have a (triangle) diagram ! Repeat the process, we obtain a sequence of models $X_0 \stackrel{\tau_0}{\leftarrow} X_1 \stackrel{\tau_1}{\leftarrow} X_2 \leftarrow \cdots \times X_n \leftarrow \cdots$ Let \mathcal{T}_i be the dual graph of \widetilde{X}_i . Then, we have $\mathcal{T}_0 \to \mathcal{T}_1 \to \mathcal{T}_2 \to \cdots$ Put $\mathcal{T}_{\varphi} := \lim \mathcal{T}_i \hookrightarrow \mathbf{P}^1_{\text{Berk}}$. Then, $\mathcal{J}_{\varphi}(\mathcal{K}) \simeq \partial \mathcal{T}_{\varphi}$.

() < </p>

An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

 $\phi: X \dashrightarrow X.$

By blowing up the indeterminacies of ϕ we can find a model X' and a birational morphism $\tau: X' \to X$ such that ϕ is lifted to a morphism

 $\widehat{\phi}:X' o X$

such that we have a (triangle) diagram ! Repeat the process, we obtain a sequence of models $X_0 \stackrel{\tau_0}{\leftarrow} X_1 \stackrel{\tau_1}{\leftarrow} X_2 \leftarrow \cdots \times X_n \leftarrow \cdots$ Let \mathcal{T}_i be the dual graph of \widetilde{X}_i . Then, we have $\mathcal{T}_0 \to \mathcal{T}_1 \to \mathcal{T}_2 \to \cdots$ Put $\mathcal{T}_{\varphi} := \lim \mathcal{T}_i \hookrightarrow \mathbf{P}^1_{\text{Berk}}$. Then, $\mathcal{J}_{\varphi}(\mathcal{K}) \simeq \partial \mathcal{T}_{\varphi}$.

・ロト ・回ト ・ヨト ・ヨト

An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi: X \dashrightarrow X.$$

By blowing up the indeterminacies of ϕ we can find a model X'and a birational morphism $\tau: X' \to X$ such that ϕ is lifted to a morphism

$$\widehat{\phi}:X' o X$$

such that we have a (triangle) diagram ! Repeat the process, we obtain a sequence of models $X_0 \stackrel{\mathcal{P}}{\leftarrow} X_1 \stackrel{\mathcal{P}}{\leftarrow} X_2 \leftarrow \cdots \times X_n \leftarrow \cdots$ Let \mathcal{T}_i be the dual graph of \widetilde{X}_i . Then, we have $\mathcal{T}_0 \to \mathcal{T}_1 \to \mathcal{T}_2 \to \cdots$ Put $\mathcal{T}_{\varphi} := \lim \mathcal{T}_i \hookrightarrow \mathbf{P}^1_{\text{Berk}}$. Then, $\mathcal{J}_{\varphi}(\mathcal{K}) \simeq \partial \mathcal{T}_{\varphi}$.

() < </p>

An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi: X \dashrightarrow X.$$

By blowing up the indeterminacies of ϕ we can find a model X' and a birational morphism $\tau:X'\to X$ such that ϕ is lifted to a morphism

 $\widehat{\phi}: X' \to X$

such that we have a (triangle) diagram ! Repeat the process, we obtain a sequence of models $X_0 \stackrel{\mathcal{P}}{\leftarrow} X_1 \stackrel{\mathcal{P}}{\leftarrow} X_2 \leftarrow \cdots \times X_n \leftarrow \cdots$ Let \mathcal{T}_i be the dual graph of \widetilde{X}_i . Then, we have $\mathcal{T}_0 \to \mathcal{T}_1 \to \mathcal{T}_2 \to \cdots$ Put $\mathcal{T}_{\varphi} := \lim \mathcal{T}_i \hookrightarrow \mathbf{P}^1_{\text{Berk}}$. Then, $\mathcal{J}_{\varphi}(\mathcal{K}) \simeq \partial \mathcal{T}_{\varphi}$.

・ロト ・回ト ・ヨト ・ヨト

An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi: X \dashrightarrow X.$$

By blowing up the indeterminacies of ϕ we can find a model X'and a birational morphism $\tau: X' \to X$ such that ϕ is lifted to a morphism

$$\widehat{\phi}: X' \to X$$

such that we have a (triangle) diagram ! Repeat the process, we obtain a sequence of models $X_0 \stackrel{\sim}{\leftarrow} X_1 \stackrel{\sim}{\leftarrow} X_2 \leftarrow \cdots \times X_n \leftarrow \cdots$ Let \mathcal{T}_i be the dual graph of \widetilde{X}_i . Then, we have $\mathcal{T}_0 \rightarrow \mathcal{T}_1 \rightarrow \mathcal{T}_2 \rightarrow \cdots$ Put $\mathcal{T}_{\varphi} := \lim \mathcal{T}_i \hookrightarrow \mathbf{P}^1_{\text{Berk}}$. Then, $\mathcal{J}_{\varphi}(K) \simeq \partial \mathcal{T}_{\varphi}$.

・ロン ・回 と ・ ヨン ・ ヨン

An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi: X \dashrightarrow X.$$

By blowing up the indeterminacies of ϕ we can find a model X'and a birational morphism $\tau: X' \to X$ such that ϕ is lifted to a morphism

$$\widehat{\phi}: X' o X$$

such that we have a (triangle) diagram ! Repeat the process, we obtain a sequence of models $X_0 \stackrel{\tau_0}{\leftarrow} X_1 \stackrel{\tau_1}{\leftarrow} X_2 \leftarrow \cdots \times X_n \leftarrow \cdots$ Let \mathcal{T}_i be the dual graph of \widetilde{X}_i . Then, we have $\mathcal{T}_0 \to \mathcal{T}_1 \to \mathcal{T}_2 \to \cdots$ Put $\mathcal{T}_{\varphi} := \lim_{i \to \infty} \mathcal{T}_i \hookrightarrow \mathbf{P}_{\text{berke}}^i$. Then, $\mathcal{J}_{\varphi}(K) \simeq \partial \mathcal{T}_{\varphi}$.

An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi: X \dashrightarrow X.$$

By blowing up the indeterminacies of ϕ we can find a model X'and a birational morphism $\tau: X' \to X$ such that ϕ is lifted to a morphism

$$\widehat{\phi}: X' \to X$$

such that we have a (triangle) diagram ! Repeat the process, we obtain a sequence of models $X_0 \stackrel{\tau_0}{\leftarrow} X_1 \stackrel{\tau_1}{\leftarrow} X_2 \leftarrow \cdots \times X_n \leftarrow \cdots$ Let \mathcal{T}_i be the dual graph of \widetilde{X}_i . Then, we have $\mathcal{T}_0 \rightarrow \mathcal{T}_1 \rightarrow \mathcal{T}_2 \rightarrow \cdots$ Put $\mathcal{T}_{\varphi} := \lim_{i \to \infty} \mathcal{T}_i \rightarrow \mathbf{P}^1_{\text{Berk}}$. Then, $\mathcal{J}_{\varphi}(\mathcal{K}) \simeq \partial \mathcal{T}_{\varphi}$.

An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi: X \dashrightarrow X.$$

By blowing up the indeterminacies of ϕ we can find a model X'and a birational morphism $\tau: X' \to X$ such that ϕ is lifted to a morphism

$$\widehat{\phi}: X' \to X$$

such that we have a (triangle) diagram ! Repeat the process, we obtain a sequence of models $X_0 \stackrel{\tau_0}{\leftarrow} X_1 \stackrel{\tau_1}{\leftarrow} X_2 \leftarrow \cdots \times X_n \leftarrow \cdots$ Let \mathcal{T}_i be the dual graph of \widetilde{X}_i . Then, we have $\mathcal{T}_0 \to \mathcal{T}_1 \to \mathcal{T}_2 \to \cdots$ Put $\mathcal{T}_{\varphi} := \lim \mathcal{T}_i \hookrightarrow \mathbf{P}^1_{\text{Berk}}$. Then, $\mathcal{J}_{\varphi}(\mathcal{K}) \simeq \partial \mathcal{T}_{\varphi}$.

An algorithm

Assume that we are given a model X of \mathbb{P}^1 and an extension of φ

$$\phi: X \dashrightarrow X.$$

By blowing up the indeterminacies of ϕ we can find a model X'and a birational morphism $\tau: X' \to X$ such that ϕ is lifted to a morphism

$$\widehat{\phi}: X' \to X$$

such that we have a (triangle) diagram ! Repeat the process, we obtain a sequence of models $X_0 \stackrel{\tau_0}{\leftarrow} X_1 \stackrel{\tau_1}{\leftarrow} X_2 \leftarrow \cdots \times X_n \leftarrow \cdots$ Let \mathcal{T}_i be the dual graph of \widetilde{X}_i . Then, we have $\mathcal{T}_0 \to \mathcal{T}_1 \to \mathcal{T}_2 \to \cdots$ Put $\mathcal{T}_{\varphi} := \lim_{\to} \mathcal{T}_i \hookrightarrow \mathbf{P}^1_{\text{Berk}}$. Then, $\mathcal{J}_{\varphi}(\mathcal{K}) \simeq \partial \mathcal{T}_{\varphi}$.

p-adic Julia sets

Example

(1) $\varphi(z) = f(z)/p$ where $f(z) \in \mathbb{Z}_p[z]$ monic and

$$f(z) \equiv z^p - z \pmod{p}$$

Then, $\mathcal{J}_{arphi}=\mathbb{Z}_{p}.$

(2) Let ho
eq 2 and $arphi(z)=
ho z^3+az^2+b\in\mathbb{Z}_
ho[z]$ with $a\in\mathbb{Z}_
ho^*.$ Then,

- $\mathcal{J}_{\varphi}(\mathbb{Q}_{\rho}^{\mathrm{n}r}) = \{\mathrm{p}t\}.$
- $\mathcal{J}_{\varphi}(K) \neq \mathcal{J}_{\varphi}$ for any discretely valued subfield K of \mathbb{C}_{p} .
- \mathcal{J}_{arphi} is not compact in $\mathbb{P}^1(\mathbb{C}_p)$

・ロト ・回ト ・ヨト ・ヨト

p-adic Julia sets

Example

(1) $\varphi(z) = f(z)/p$ where $f(z) \in \mathbb{Z}_p[z]$ monic and

$$f(z) \equiv z^p - z \pmod{p}$$

Then, $\mathcal{J}_{arphi}=\mathbb{Z}_{p}.$

(2) Let p
eq 2 and $arphi(z)=pz^3+az^2+b\in\mathbb{Z}_p[z]$ with $a\in\mathbb{Z}_p^*.$ Then,

- $\mathcal{J}_{\varphi}(\mathbb{Q}_p^{\mathrm{n}r}) = \{\mathrm{p}t\}.$
- $\mathcal{J}_{\varphi}(K) \neq \mathcal{J}_{\varphi}$ for any discretely valued subfield K of \mathbb{C}_{p} .
- \mathcal{J}_arphi is not compact in $\mathbb{P}^1(\mathbb{C}_p)$

・ロン ・回 と ・ ヨ と ・ ヨ と …

p-adic Julia sets

Example

(1) $\varphi(z) = f(z)/p$ where $f(z) \in \mathbb{Z}_p[z]$ monic and

$$f(z) \equiv z^p - z \pmod{p}$$

Then, $\mathcal{J}_{\varphi} = \mathbb{Z}_{p}$.

(2) Let p
eq 2 and $arphi(z)=pz^3+az^2+b\in\mathbb{Z}_p[z]$ with $a\in\mathbb{Z}_p^*.$ Then,

- $\mathcal{J}_{\varphi}(\mathbb{Q}_p^{\mathrm{n}r}) = \{\mathrm{p}t\}.$
- $\mathcal{J}_{\varphi}(K) \neq \mathcal{J}_{\varphi}$ for any discretely valued subfield K of \mathbb{C}_{ρ} .
- \mathcal{J}_arphi is not compact in $\mathbb{P}^1(\mathbb{C}_p)$

・ロン ・回 と ・ ヨ と ・ ヨ と …

p-adic Julia sets

Example

(1) $\varphi(z) = f(z)/p$ where $f(z) \in \mathbb{Z}_p[z]$ monic and

$$f(z) \equiv z^p - z \pmod{p}$$

Then, $\mathcal{J}_{\varphi} = \mathbb{Z}_{p}$.

(2) Let $p \neq 2$ and $\varphi(z) = pz^3 + az^2 + b \in \mathbb{Z}_p[z]$ with $a \in \mathbb{Z}_p^*$. Then,

- $\mathcal{J}_{\varphi}(\mathbb{Q}_{p}^{\mathrm{n}r}) = \{\mathrm{p}t\}.$
- $\mathcal{J}_{\varphi}(K) \neq \mathcal{J}_{\varphi}$ for any discretely valued subfield K of \mathbb{C}_{p} .
- \mathcal{J}_arphi is not compact in $\mathbb{P}^1(\mathbb{C}_p)$

・ロン ・回 と ・ ヨ と ・ ヨ と …

p-adic Julia sets

Example

(1) $\varphi(z) = f(z)/p$ where $f(z) \in \mathbb{Z}_p[z]$ monic and

$$f(z) \equiv z^p - z \pmod{p}$$

Then,
$$\mathcal{J}_{\varphi} = \mathbb{Z}_{p}$$
.

(2) Let $p \neq 2$ and $\varphi(z) = pz^3 + az^2 + b \in \mathbb{Z}_p[z]$ with $a \in \mathbb{Z}_p^*$. Then,

•
$$\mathcal{J}_{\varphi}(\mathbb{Q}_{p}^{\mathrm{n}r}) = \{\mathrm{p}t\}.$$

• $\mathcal{J}_{\varphi}(K)
eq \mathcal{J}_{\varphi}$ for any discretely valued subfield K of \mathbb{C}_{p} .

• \mathcal{J}_{arphi} is not compact in $\mathbb{P}^1(\mathbb{C}_p)$

・ロン ・四 と ・ ヨ と ・ ヨ と

p-adic Julia sets

Example

(1) $\varphi(z) = f(z)/p$ where $f(z) \in \mathbb{Z}_p[z]$ monic and

$$f(z) \equiv z^p - z \pmod{p}$$

Then, $\mathcal{J}_{\varphi} = \mathbb{Z}_{p}$. (2) Let $p \neq 2$ and $\varphi(z) = pz^{3} + az^{2} + b \in \mathbb{Z}_{p}[z]$ with $a \in \mathbb{Z}_{p}^{*}$. Then,

•
$$\mathcal{J}_{\varphi}(\mathbb{Q}_{p}^{\mathrm{n}r}) = \{\mathrm{p}t\}.$$

- $\mathcal{J}_{\varphi}(K) \neq \mathcal{J}_{\varphi}$ for any discretely valued subfield K of \mathbb{C}_{p} .
- \mathcal{J}_{arphi} is not compact in $\mathbb{P}^1(\mathbb{C}_p)$

p-adic Julia sets

Example

(1) $\varphi(z) = f(z)/p$ where $f(z) \in \mathbb{Z}_p[z]$ monic and

$$f(z) \equiv z^p - z \pmod{p}$$

Then, $\mathcal{J}_{\varphi} = \mathbb{Z}_{p}$. (2) Let $p \neq 2$ and $\varphi(z) = pz^{3} + az^{2} + b \in \mathbb{Z}_{p}[z]$ with $a \in \mathbb{Z}_{p}^{*}$. Then,

- $\mathcal{J}_{\varphi}(\mathbb{Q}_p^{\mathrm{n}r}) = \{\mathrm{p}t\}.$
- $\mathcal{J}_{\varphi}(K) \neq \mathcal{J}_{\varphi}$ for any discretely valued subfield K of \mathbb{C}_{p} .

•
$$\mathcal{J}_{arphi}$$
 is not compact in $\mathbb{P}^1(\mathbb{C}_p)$

・ロン ・回 と ・ ヨン ・ ヨン

э

Density of repelling periodic points

Density question: Is \mathcal{J}_{φ} the closure of repelling periodic points? Partial results under some conditions have been obtained.

Theorem (J.-P. Bézivin)

If φ has at least one repelling periodic point, then \mathcal{J}_{φ} is the closure of repelling periodic points.

Theorem (Y. Okuyama)

If the Lyapunov exponent $L(\varphi)$ is positive, then \mathcal{J}_{φ} is the closure of repelling periodic points.

Okuyama's theorem holds over the complex field as well.

・ロト ・回ト ・ヨト ・ヨト

Density of repelling periodic points

Density question: Is \mathcal{J}_{φ} the closure of repelling periodic points? Partial results under some conditions have been obtained.

Theorem (J.-P. Bézivin)

If φ has at least one repelling periodic point, then \mathcal{J}_{φ} is the closure of repelling periodic points.

Theorem (Y. Okuyama)

If the Lyapunov exponent $L(\varphi)$ is positive, then \mathcal{J}_{φ} is the closure of repelling periodic points.

Okuyama's theorem holds over the complex field as well.

Density of repelling periodic points

Density question: Is \mathcal{J}_{φ} the closure of repelling periodic points? Partial results under some conditions have been obtained.

Theorem (J.-P. Bézivin)

If φ has at least one repelling periodic point, then \mathcal{J}_{φ} is the closure of repelling periodic points.

Theorem (Y. Okuyama)

If the Lyapunov exponent $L(\varphi)$ is positive, then \mathcal{J}_{φ} is the closure of repelling periodic points.

Okuyama's theorem holds over the complex field as well.

・ロン ・回 と ・ ヨン ・ ヨン

Density of repelling periodic points

Density question: Is \mathcal{J}_{φ} the closure of repelling periodic points? Partial results under some conditions have been obtained.

Theorem (J.-P. Bézivin)

If φ has at least one repelling periodic point, then \mathcal{J}_{φ} is the closure of repelling periodic points.

Theorem (Y. Okuyama)

If the Lyapunov exponent $L(\varphi)$ is positive, then \mathcal{J}_{φ} is the closure of repelling periodic points.

Okuyama's theorem holds over the complex field as well.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Question

(1). How to detect whether or not $\mathcal{J}_{\varphi}(K) = \emptyset$ effectively?

(2). Suppose $\mathcal{J}_{\varphi} \neq \emptyset$. Is it true that φ has a repelling periodic point?

(3). Assume that $\mathcal{J}_{\varphi}(K) \neq \emptyset$. Determine the dynamics of φ on $\mathcal{J}_{\varphi}(K)$.

・ロン ・回 と ・ ヨ と ・ ヨ と

臣

Question

(1). How to detect whether or not $\mathcal{J}_{\varphi}(K) = \emptyset$ effectively?

(2). Suppose $\mathcal{J}_{\varphi} \neq \emptyset$. Is it true that φ has a repelling periodic point?

(3). Assume that $\mathcal{J}_{\varphi}(K) \neq \emptyset$. Determine the dynamics of φ on $\mathcal{J}_{\varphi}(K)$.

・ロン ・回 > ・ヨン ・ヨン

Question

(1). How to detect whether or not $\mathcal{J}_{\varphi}(\mathcal{K}) = \emptyset$ effectively?

(2). Suppose $\mathcal{J}_{\varphi} \neq \emptyset$. Is it true that φ has a repelling periodic point?

(3). Assume that $\mathcal{J}_{\varphi}(K) \neq \emptyset$. Determine the dynamics of φ on $\mathcal{J}_{\varphi}(K)$.

Question

- (1). How to detect whether or not $\mathcal{J}_{\varphi}(K) = \emptyset$ effectively?
- (2). Suppose $\mathcal{J}_{\varphi} \neq \emptyset$. Is it true that φ has a repelling periodic point?

(3). Assume that $\mathcal{J}_{\varphi}(K) \neq \emptyset$. Determine the dynamics of φ on $\mathcal{J}_{\varphi}(K)$.

The converse statement of Morton-Silverman Theorem does not hold in general.

Example

(1). Lattès family Let E be an elliptic curve over K and consider diagram:

$$\begin{array}{ccc} E & \stackrel{[m]}{\longrightarrow} & E \\ \downarrow & & \downarrow \\ \mathbb{P}^{1}_{K} & \stackrel{\varphi}{\longrightarrow} & \mathbb{P}^{1}_{K} \end{array}$$

• If E is a Tate curve, then φ does not have good reduction over $\mathbb{C}_v.$

The converse statement of Morton-Silverman Theorem does not hold in general.

Example

(1). Lattès family Let E be an elliptic curve over K and consider diagram:

$$\begin{array}{ccc} E & \stackrel{[m]}{\longrightarrow} & E \\ \downarrow & & \downarrow \implies \mathcal{J}_{\varphi} = \emptyset. \\ \mathbb{P}^{1}_{\mathcal{K}} & \stackrel{\varphi}{\longrightarrow} & \mathbb{P}^{1}_{\mathcal{K}} \end{array}$$

• If E is a Tate curve, then φ does not have good reduction over $\mathbb{C}_v.$

The converse statement of Morton-Silverman Theorem does not hold in general.

Example

(1). Lattès family Let E be an elliptic curve over K and consider diagram:

$$\begin{array}{cccc} E & \stackrel{[m]}{\longrightarrow} & E \\ \downarrow & & \downarrow \\ \mathbb{P}^{1}_{\mathcal{K}} & \stackrel{\varphi}{\longrightarrow} & \mathbb{P}^{1}_{\mathcal{K}} \end{array} \\ \end{array}$$

- If E is a Tate curve, then φ does not have good reduction over $\mathbb{C}_{\mathbf{v}}.$

() < </p>

Example

(2). (Favre and Rivera-Letelier) Let $k \ge 2$ and $d_1, \ldots, d_k > 1$ be integers. Let $a_2, \ldots, a_k \in \mathbb{C}_v^*$ such that $|a_k| > \cdots > |a_2| > 0$. Set $\delta_1 = d_1, \delta_j = d_j + d_{j-1}$ for $j = 2, \ldots, k$ and

$$\varphi(z) = z^{d_1} \prod_{j=2}^k \left(1 + (a_j z)^{\delta_j}\right)^{(-1)^j}$$

If $\sum d_j^{-1} \leq 1$ then there exist a_2, \ldots, a_k such that $\mathcal{J}_{\varphi} = \emptyset$ and φ does not have good reduction over \mathbb{C}_{v} .

・ロン ・回 と ・ヨン ・ヨン

Polynomial dynamics

We restrict to the case $\varphi(z) \in \mathcal{K}[z]$.

• $\mathcal{J}_{\varphi}(K)$ is a compact subset of $\mathbb{P}^1(K)$.

Goal: Look for an effective algorithm to determine whether $\mathcal{J}_{arphi}(K)$ is empty or not.

Polynomial dynamics

We restrict to the case $\varphi(z) \in K[z]$.

• $\mathcal{J}_{\varphi}(K)$ is a compact subset of $\mathbb{P}^1(K)$.

Goal: Look for an effective algorithm to determine whether $\mathcal{J}_{\varphi}(K)$ is empty or not.

Polynomial dynamics

We restrict to the case $\varphi(z) \in K[z]$.

• $\mathcal{J}_{\varphi}(K)$ is a compact subset of $\mathbb{P}^1(K)$.

Goal: Look for an effective algorithm to determine whether $\mathcal{J}_{\varphi}(K)$ is empty or not.

・ロン ・回 と ・ ヨ と ・ ヨ と

Quadratic family

Low degrees d = 2, 3:

For the quadratic family, the situation is much simpler than the classical case ($K = \mathbb{C}$). Let $\varphi_c(z) = z^2 + c$ and $\mathcal{J}_c(K) = \mathcal{J}_{\varphi_c}(K)$.

Theorem (Benedetto-Briend-Perdry)

 $\mathcal{J}_c(K) \neq \emptyset$ if and only if one of the following conditions holds.

• $p \neq 2$: v(c) = -2k < 0;

2 p = 2: v(4c) < 0 and 1 - 4c is a square in K.

In this case $(\mathcal{J}_c(K) \neq \emptyset)$, we have $\mathcal{J}_c(K) = \mathcal{J}_c$ and the dynamics of φ on $\mathcal{J}_c(K)$ is topologically conjugated to the full (one-sided) 2-shift.

Quadratic family

Low degrees d = 2, 3:

For the quadratic family, the situation is much simpler than the classical case ($K = \mathbb{C}$). Let $\varphi_c(z) = z^2 + c$ and $\mathcal{J}_c(K) = \mathcal{J}_{\varphi_c}(K)$.

Theorem (Benedetto-Briend-Perdry)

 $\mathcal{J}_c(K) \neq \emptyset$ if and only if one of the following conditions holds.

• $p \neq 2$: v(c) = -2k < 0;

2) p = 2: v(4c) < 0 and 1 - 4c is a square in K.

In this case $(\mathcal{J}_c(K) \neq \emptyset)$, we have $\mathcal{J}_c(K) = \mathcal{J}_c$ and the dynamics of φ on $\mathcal{J}_c(K)$ is topologically conjugated to the full (one-sided) 2-shift.

Quadratic family

Low degrees d = 2, 3:

For the quadratic family, the situation is much simpler than the classical case ($K = \mathbb{C}$). Let $\varphi_c(z) = z^2 + c$ and $\mathcal{J}_c(K) = \mathcal{J}_{\varphi_c}(K)$.

Theorem (Benedetto-Briend-Perdry)

 $\mathcal{J}_c(K) \neq \emptyset$ if and only if one of the following conditions holds.

• $p \neq 2$: v(c) = -2k < 0;

2 p = 2: v(4c) < 0 and 1 - 4c is a square in K.

In this case $(\mathcal{J}_c(K) \neq \emptyset)$, we have $\mathcal{J}_c(K) = \mathcal{J}_c$ and the dynamics of φ on $\mathcal{J}_c(K)$ is topologically conjugated to the full (one-sided) 2-shift.

Quadratic family

Low degrees d = 2, 3:

For the quadratic family, the situation is much simpler than the classical case ($K = \mathbb{C}$). Let $\varphi_c(z) = z^2 + c$ and $\mathcal{J}_c(K) = \mathcal{J}_{\varphi_c}(K)$.

Theorem (Benedetto-Briend-Perdry)

 $\mathcal{J}_c(K) \neq \emptyset$ if and only if one of the following conditions holds.

• $p \neq 2$: v(c) = -2k < 0;

2 p = 2: v(4c) < 0 and 1 - 4c is a square in K.

In this case $(\mathcal{J}_c(K) \neq \emptyset)$, we have $\mathcal{J}_c(K) = \mathcal{J}_c$ and the dynamics of φ on $\mathcal{J}_c(K)$ is topologically conjugated to the full (one-sided) 2-shift.

Quadratic family

Low degrees d = 2, 3:

For the quadratic family, the situation is much simpler than the classical case ($K = \mathbb{C}$). Let $\varphi_c(z) = z^2 + c$ and $\mathcal{J}_c(K) = \mathcal{J}_{\varphi_c}(K)$.

Theorem (Benedetto-Briend-Perdry)

 $\mathcal{J}_c(K) \neq \emptyset$ if and only if one of the following conditions holds.

• $p \neq 2$: v(c) = -2k < 0;

2 p = 2: v(4c) < 0 and 1 - 4c is a square in K.

In this case $(\mathcal{J}_c(K) \neq \emptyset)$, we have $\mathcal{J}_c(K) = \mathcal{J}_c$ and the dynamics of φ on $\mathcal{J}_c(K)$ is topologically conjugated to the full (one-sided) 2-shift.

• We can rephrase the theorem as the following $\mathcal{J}_c(K) \neq \emptyset$ if and only if the two (finite) fixed points of φ_c are *K*-rational and repelling.

Liang-Chung Hsia, NTNU

Approximating non-Archimedean sets

Cubic polynomials

For cubic polynomials criterion for the existence of K-rational Julia set is similar to the quadratic family.

Theorem (Briend-Hsia)

Let φ be a cubic polynomial. Then the K-rational Julia set $\mathcal{J}_{\varphi}(K) \neq \emptyset$ if and only if one of the fixed point of φ is K-rational and repelling.

・ロト ・回ト ・ヨト ・ヨト

Cubic polynomials

For cubic polynomials criterion for the existence of K-rational Julia set is similar to the quadratic family.

Theorem (Briend-Hsia)

Let φ be a cubic polynomial. Then the K-rational Julia set $\mathcal{J}_{\varphi}(K) \neq \emptyset$ if and only if one of the fixed point of φ is K-rational and repelling.

・ロト ・ 同ト ・ ヨト ・ ヨト

Remarks

- (B.-H.) The same criterion holds for the family of quadratic rational maps.
- Proofs show that $\mathcal{J}_{\varphi} = \emptyset \Longrightarrow \varphi$ has good reduction over \mathbb{C}_{ν} .
- For d = 2, 3, the criterion for determining the existence of J_φ (J_φ(K)) is effective.
- Remark made by Silverman: the above criterion for rational maps follows from his theorem on the Z-structure of the moduli space M_d and that M₂ is isomorphic to A²_Z as schemes over Z.

() < </p>

Remarks

- (B.-H.) The same criterion holds for the family of quadratic rational maps.
- Proofs show that $\mathcal{J}_{\varphi} = \emptyset \Longrightarrow \varphi$ has good reduction over \mathbb{C}_{ν} .
- For d = 2, 3, the criterion for determining the existence of $\mathcal{J}_{\varphi}(\mathcal{J}_{\varphi}(K))$ is effective.
- Remark made by Silverman: the above criterion for rational maps follows from his theorem on the Z-structure of the moduli space M_d and that M₂ is isomorphic to A²_Z as schemes over Z.

() < </p>

Remarks

- (B.-H.) The same criterion holds for the family of quadratic rational maps.
- Proofs show that $\mathcal{J}_{\varphi} = \emptyset \Longrightarrow \varphi$ has good reduction over \mathbb{C}_{ν} .
- For d = 2, 3, the criterion for determining the existence of $\mathcal{J}_{\varphi}(\mathcal{J}_{\varphi}(K))$ is effective.
- Remark made by Silverman: the above criterion for rational maps follows from his theorem on the \mathbb{Z} -structure of the moduli space \mathcal{M}_d and that \mathcal{M}_2 is isomorphic to $\mathbb{A}^2_{\mathbb{Z}}$ as schemes over \mathbb{Z} .

() < </p>

Remarks

- (B.-H.) The same criterion holds for the family of quadratic rational maps.
- Proofs show that $\mathcal{J}_{\varphi} = \emptyset \Longrightarrow \varphi$ has good reduction over \mathbb{C}_{ν} .
- For d = 2, 3, the criterion for determining the existence of $\mathcal{J}_{\varphi}(\mathcal{J}_{\varphi}(K))$ is effective.
- Remark made by Silverman: the above criterion for rational maps follows from his theorem on the \mathbb{Z} -structure of the moduli space \mathcal{M}_d and that \mathcal{M}_2 is isomorphic to $\mathbb{A}^2_{\mathbb{Z}}$ as schemes over \mathbb{Z} .

・ロト ・回ト ・ヨト ・ヨト

Remarks

- (B.-H.) The same criterion holds for the family of quadratic rational maps.
- Proofs show that $\mathcal{J}_{\varphi} = \emptyset \Longrightarrow \varphi$ has good reduction over \mathbb{C}_{ν} .
- For d = 2, 3, the criterion for determining the existence of $\mathcal{J}_{\varphi}(\mathcal{J}_{\varphi}(\mathcal{K}))$ is effective.
- Remark made by Silverman: the above criterion for rational maps follows from his theorem on the \mathbb{Z} -structure of the moduli space \mathcal{M}_d and that \mathcal{M}_2 is isomorphic to $\mathbb{A}^2_{\mathbb{Z}}$ as schemes over \mathbb{Z} .

・ロト ・回ト ・ヨト ・ヨト

Remarks

- (B.-H.) The same criterion holds for the family of quadratic rational maps.
- Proofs show that $\mathcal{J}_{\varphi} = \emptyset \Longrightarrow \varphi$ has good reduction over \mathbb{C}_{ν} .
- For d = 2, 3, the criterion for determining the existence of $\mathcal{J}_{\varphi}(\mathcal{J}_{\varphi}(\mathcal{K}))$ is effective.
- Remark made by Silverman: the above criterion for rational maps follows from his theorem on the \mathbb{Z} -structure of the moduli space \mathcal{M}_d and that \mathcal{M}_2 is isomorphic to $\mathbb{A}^2_{\mathbb{Z}}$ as schemes over \mathbb{Z} .

・ロン ・回 と ・ ヨ と ・ ヨ と

Example (R. Benedetto)

(1) Let the residue characteristic p be odd. Let $a \in \mathbb{C}_v$ satisfy $-p/(2p+2) \leq v(a) < 0$. Let $\varphi(z) = z^2(z-a)^p$. Then, $\mathcal{J}_{\varphi} = \emptyset$ and φ does not have good reduction over \mathbb{C}_v .

(2) For p = 2, the following example shares the same property as in (1)

$$arphi(z)=z^4+rac{z^2}{\sqrt{2}}\in\mathbb{C}_2[z]$$

・ロト ・回ト ・ヨト ・ヨト

Example (R. Benedetto)

(1) Let the residue characteristic p be odd. Let $a \in \mathbb{C}_v$ satisfy $-p/(2p+2) \leq v(a) < 0$. Let $\varphi(z) = z^2(z-a)^p$. Then, $\mathcal{J}_{\varphi} = \emptyset$ and φ does not have good reduction over \mathbb{C}_v .

(2) For p = 2, the following example shares the same property as in (1)

$$arphi(z)=z^4+rac{z^2}{\sqrt{2}}\in\mathbb{C}_2[z]$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Example (R. Benedetto)

(1) Let the residue characteristic p be odd. Let $a \in \mathbb{C}_v$ satisfy $-p/(2p+2) \leq v(a) < 0$. Let $\varphi(z) = z^2(z-a)^p$. Then, $\mathcal{J}_{\varphi} = \emptyset$ and φ does not have good reduction over \mathbb{C}_v .

(2) For p = 2, the following example shares the same property as in (1)

$$\varphi(z) = z^4 + \frac{z^2}{\sqrt{2}} \in \mathbb{C}_2[z]$$

・ロト ・回ト ・ヨト ・ヨト

Example (R. Benedetto)

(1) Let the residue characteristic p be odd. Let $a \in \mathbb{C}_v$ satisfy $-p/(2p+2) \leq v(a) < 0$. Let $\varphi(z) = z^2(z-a)^p$. Then, $\mathcal{J}_{\varphi} = \emptyset$ and φ does not have good reduction over \mathbb{C}_v .

(2) For p = 2, the following example shares the same property as in (1)

$$\varphi(z) = z^4 + \frac{z^2}{\sqrt{2}} \in \mathbb{C}_2[z]$$

・ロン ・回 と ・ ヨン ・ ヨン

Example (R. Benedetto)

(1) Let the residue characteristic p be odd. Let $a \in \mathbb{C}_v$ satisfy $-p/(2p+2) \leq v(a) < 0$. Let $\varphi(z) = z^2(z-a)^p$. Then, $\mathcal{J}_{\varphi} = \emptyset$ and φ does not have good reduction over \mathbb{C}_v .

(2) For p = 2, the following example shares the same property as in (1)

$$\varphi(z)=z^4+\frac{z^2}{\sqrt{2}}\in\mathbb{C}_2[z]$$

イロン イヨン イヨン イヨン

Higher degree polynomials

For polynomial with deg $\varphi \ge 4$, the above criterion for d = 2, 3does not hold in general. Let $(p, d) \notin \{(2, 4), (2, 5), (2, 7), (3, 5)\}$. Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \ge 2$ and $p \nmid e_i$ (if p = 0, this condition is empty). Let $n = \text{lcm}(\{e_i\})$.

Example $(d = e_0 + e_1)$

Let

$$\varphi(z) = \frac{1}{\pi^n} z^{e_0} (z-1)^{e_1} + z.$$

Then, $Fix(\varphi) = \{0, 1, \infty\}$ and non-repelling. $\mathcal{J}_{\varphi}(K) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

3

For polynomial with deg $\varphi \ge 4$, the above criterion for d = 2, 3 does not hold in general.

Let $(p, d) \notin \{(2, 4), (2, 5), (2, 7), (3, 5)\}$. Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \ge 2$ and $p \nmid e_i$ (if p = 0, this condition is empty). Let $n = \text{lcm}(\{e_i\})$.

Example $(d = e_0 + e_1)$

Let

$$\varphi(z) = \frac{1}{\pi^n} z^{e_0} (z-1)^{e_1} + z.$$

Then, $Fix(\varphi) = \{0, 1, \infty\}$ and non-repelling. $\mathcal{J}_{\varphi}(K) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.

For polynomial with deg $\varphi \ge 4$, the above criterion for d = 2, 3does not hold in general. Let $(p, d) \notin \{(2, 4), (2, 5), (2, 7), (3, 5)\}$. Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \ge 2$ and $p \nmid e_i$ (if p = 0, this condition is empty). Let $n = \text{lcm}(\{e_i\})$.

Example $(d = e_0 + e_1)$

Let

$$\varphi(z) = \frac{1}{\pi^n} z^{e_0} (z-1)^{e_1} + z.$$

Then, $Fix(\varphi) = \{0, 1, \infty\}$ and non-repelling. $\mathcal{J}_{\varphi}(\mathcal{K}) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.

For polynomial with deg $\varphi \ge 4$, the above criterion for d = 2, 3does not hold in general. Let $(p, d) \notin \{(2, 4), (2, 5), (2, 7), (3, 5)\}$. Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \ge 2$ and $p \nmid e_i$ (if p = 0, this condition is empty). Let $n = \text{lcm}(\{e_i\})$.

Example $(d = e_0 + e_1)$

Let

$$\varphi(z) = \frac{1}{\pi^n} z^{e_0} (z-1)^{e_1} + z.$$

Then, $Fix(\varphi) = \{0, 1, \infty\}$ and non-repelling. $\mathcal{J}_{\varphi}(\mathcal{K}) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.

For polynomial with deg $\varphi \ge 4$, the above criterion for d = 2, 3does not hold in general. Let $(p, d) \notin \{(2, 4), (2, 5), (2, 7), (3, 5)\}$. Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \ge 2$ and $p \nmid e_i$ (if p = 0, this condition is empty). Let $n = \text{lcm}(\{e_i\})$.

Example $(d = e_0 + e_1)$

Let

$$\varphi(z) = \frac{1}{\pi^n} z^{e_0} (z-1)^{e_1} + z.$$

Then, $Fix(\varphi) = \{0, 1, \infty\}$ and non-repelling. $\mathcal{J}_{\varphi}(\mathcal{K}) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.

For polynomial with deg $\varphi \ge 4$, the above criterion for d = 2, 3does not hold in general. Let $(p, d) \notin \{(2, 4), (2, 5), (2, 7), (3, 5)\}$. Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \ge 2$ and $p \nmid e_i$ (if p = 0, this condition is empty). Let $n = \text{lcm}(\{e_i\})$.

Example $(d = e_0 + e_1)$

Let

$$\varphi(z) = \frac{1}{\pi^n} z^{e_0} (z-1)^{e_1} + z.$$

Then, $Fix(\varphi) = \{0, 1, \infty\}$ and non-repelling. $\mathcal{J}_{\varphi}(K) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.

・ロン ・四 と ・ ヨ と ・ ヨ と

Э

For polynomial with deg $\varphi \ge 4$, the above criterion for d = 2, 3does not hold in general. Let $(p, d) \notin \{(2, 4), (2, 5), (2, 7), (3, 5)\}$. Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \ge 2$ and $p \nmid e_i$ (if p = 0, this condition is empty). Let $n = \text{lcm}(\{e_i\})$.

Example $(d = e_0 + e_1)$

Let

$$\varphi(z)=\frac{1}{\pi^n}z^{\mathbf{e}_0}(z-1)^{\mathbf{e}_1}+z.$$

Then, $Fix(\varphi) = \{0, 1, \infty\}$ and non-repelling. $\mathcal{J}_{\varphi}(\mathcal{K}) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.

・ロン ・回 と ・ 回 と ・ 回 と

크

For polynomial with deg $\varphi \ge 4$, the above criterion for d = 2, 3does not hold in general. Let $(p, d) \notin \{(2, 4), (2, 5), (2, 7), (3, 5)\}$. Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \ge 2$ and $p \nmid e_i$ (if p = 0, this condition is empty). Let $n = \text{lcm}(\{e_i\})$.

Example $(d = e_0 + e_1)$

Let

$$\varphi(z)=\frac{1}{\pi^n}z^{\mathbf{e}_0}(z-1)^{\mathbf{e}_1}+z.$$

Then, $Fix(\varphi) = \{0, 1, \infty\}$ and non-repelling.

 $\mathcal{J}_{\varphi}(K) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.

・ロン ・四 と ・ ヨ と ・ ヨ と

크

For polynomial with deg $\varphi \ge 4$, the above criterion for d = 2, 3does not hold in general. Let $(p, d) \notin \{(2, 4), (2, 5), (2, 7), (3, 5)\}$. Write $d = e_0 + e_1$ or $e_0 + e_1 + e_2$ such that $e_i \ge 2$ and $p \nmid e_i$ (if p = 0, this condition is empty). Let $n = \text{lcm}(\{e_i\})$.

Example $(d = e_0 + e_1)$

Let

$$\varphi(z)=\frac{1}{\pi^n}z^{\mathbf{e}_0}(z-1)^{\mathbf{e}_1}+z.$$

Then, $Fix(\varphi) = \{0, 1, \infty\}$ and non-repelling.

 $\mathcal{J}_{\varphi}(\mathcal{K}) \neq \emptyset$ and the minimal period of the repelling periodic points is 2.

・ロン ・回 と ・ ヨ と ・ ヨ と …

크

Integral points

Consider $\sigma : \mathcal{P}_d \to \mathbb{A}^N$ where \mathcal{P}_d denotes the moduli space of polynomials of degree d. Let $[\varphi] \in \mathcal{P}_d(\mathbb{C}_v)$. If $\mathcal{J}_{\varphi} = \emptyset$ then all periodic points are non-repelling. Hence $\sigma([\varphi]) \in \mathbb{A}^N(\widehat{\mathcal{O}_K})$.

Question

Is it true that $\sigma^{-1}(\mathbb{A}^N(\mathcal{O}_K))$ consist of all polynomials φ with empty Julia set?

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

3

Integral points

Consider $\sigma : \mathcal{P}_d \to \mathbb{A}^N$ where \mathcal{P}_d denotes the moduli space of polynomials of degree d. Let $[\varphi] \in \mathcal{P}_d(\mathbb{C}_v)$. If $\mathcal{J}_{\varphi} = \emptyset$ then all periodic points are non-repelling. Hence $\sigma([\varphi]) \in \mathbb{A}^N(\widehat{\mathcal{O}_K})$.

Question

Is it true that $\sigma^{-1}(\mathbb{A}^N(\mathcal{O}_{\mathcal{K}}))$ consist of all polynomials φ with empty Julia set?

Integral points

Consider $\sigma : \mathcal{P}_d \to \mathbb{A}^N$ where \mathcal{P}_d denotes the moduli space of polynomials of degree d. Let $[\varphi] \in \mathcal{P}_d(\mathbb{C}_v)$. If $\mathcal{J}_{\varphi} = \emptyset$ then all periodic points are non-repelling. Hence $\sigma([\varphi]) \in \mathbb{A}^N(\widehat{\mathcal{O}_K})$.

Question

Is it true that $\sigma^{-1}(\mathbb{A}^N(\mathcal{O}_{\mathcal{K}}))$ consist of all polynomials φ with empty Julia set?

・ロン ・回 と ・ ヨ と ・ ヨ と

Integral points

Consider $\sigma : \mathcal{P}_d \to \mathbb{A}^N$ where \mathcal{P}_d denotes the moduli space of polynomials of degree d. Let $[\varphi] \in \mathcal{P}_d(\mathbb{C}_v)$. If $\mathcal{J}_{\varphi} = \emptyset$ then all periodic points are non-repelling. Hence $\sigma([\varphi]) \in \mathbb{A}^N(\widehat{\mathcal{O}_K})$.

Question

Is it true that $\sigma^{-1}(\mathbb{A}^N(\mathcal{O}_{\mathcal{K}}))$ consist of all polynomials φ with empty Julia set?

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Integral points

Consider $\sigma : \mathcal{P}_d \to \mathbb{A}^N$ where \mathcal{P}_d denotes the moduli space of polynomials of degree d. Let $[\varphi] \in \mathcal{P}_d(\mathbb{C}_v)$. If $\mathcal{J}_{\varphi} = \emptyset$ then all periodic points are non-repelling. Hence $\sigma([\varphi]) \in \mathbb{A}^N(\widehat{\mathcal{O}_K})$.

Question

Is it true that $\sigma^{-1}(\mathbb{A}^{N}(\widehat{\mathcal{O}_{K}}))$ consist of all polynomials φ with empty Julia set?

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Effective criterion

We believe the following is true.

Conjecture

Let $\varphi \in K[z]$ be of degree d. There exist a constant N = N(p, d) such that $\mathcal{J}_{\varphi} = \emptyset$ if and only if all the periodic points of period r with $1 \leq r \leq N$ are non-repelling.

・ロン ・回 と ・ ヨ と ・ ヨ と …

Effective criterion

We believe the following is true.

Conjecture

Let $\varphi \in K[z]$ be of degree d. There exist a constant N = N(p, d) such that $\mathcal{J}_{\varphi} = \emptyset$ if and only if all the periodic points of period r with $1 \leq r \leq N$ are non-repelling.

・ロト ・回ト ・ヨト ・ヨト

Effective criterion

We believe the following is true.

Conjecture

Let $\varphi \in K[z]$ be of degree d. There exist a constant N = N(p, d) such that $\mathcal{J}_{\varphi} = \emptyset$ if and only if all the periodic points of period r with $1 \leq r \leq N$ are non-repelling.

・ロト ・ 同ト ・ ヨト ・ ヨト