On approximating non-Archimedean Julia sets joint work with Jean-Yves Briend

Liang-Chung Hsia
National Taiwan Normal University

Complex and p-adic Dynamics at ICERM February 13-17, 2012.

Outline

(1) Introduction
(2) Non-Archimedean Julia set
(3) Polynomials
(4) Question
K : a field complete with respect to absolute value $|\cdot|$

$$
\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \quad \text { of degree } d \geq 2 \text { over } K
$$

K : a field complete with respect to absolute value $|\cdot|$

$$
\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \quad \text { of degree } d \geq 2 \text { over } K
$$

$\mathcal{J}_{\varphi}(K)=$ the K-rational Julia set of φ
$=$ the subset of points in $\mathbb{P}^{1}(K)$ where $\left\{\varphi^{n}\right\}_{n \geq 1}$
is not equicontinuous.
\qquad
K : a field complete with respect to absolute value $|\cdot|$

$$
\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \quad \text { of degree } d \geq 2 \text { over } K
$$

$\mathcal{J}_{\varphi}(K)=$ the K-rational Julia set of φ
$=$ the subset of points in $\mathbb{P}^{1}(K)$ where $\left\{\varphi^{n}\right\}_{n \geq 1}$
is not equicontinuous.

Problem

To compute/visualize $\mathcal{J}_{\varphi}(K)$.
\qquad
K : a field complete with respect to absolute value $|\cdot|$

$$
\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \quad \text { of degree } d \geq 2 \text { over } K .
$$

$\mathcal{J}_{\varphi}(K)=$ the K-rational Julia set of φ
$=$ the subset of points in $\mathbb{P}^{1}(K)$ where $\left\{\varphi^{n}\right\}_{n \geq 1}$
is not equicontinuous.

Problem

To compute/visualize $\mathcal{J}_{\varphi}(K)$.
In general this is a difficult problem in the case where $K=\mathbb{C}$.
K : a field complete with respect to absolute value $|\cdot|$

$$
\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \quad \text { of degree } d \geq 2 \text { over } K
$$

$\mathcal{J}_{\varphi}(K)=$ the K-rational Julia set of φ
$=$ the subset of points in $\mathbb{P}^{1}(K)$ where $\left\{\varphi^{n}\right\}_{n \geq 1}$
is not equicontinuous.

Problem

To compute/visualize $\mathcal{J}_{\varphi}(K)$.
In general this is a difficult problem in the case where $K=\mathbb{C}$.

Theorem (Braverman-Yampolsky)

There exist a complex number c such that the (complex) Julia set of the quadratic polynomial $\varphi_{c}(z)=z^{2}+c$ is not computable.

Notation for non-Archimedean field

Notation for non-Archimedean field

K a discretely valued field,

Notation for non-Archimedean field

K a discretely valued field,
$v: K^{*} \rightarrow \mathbb{Z}$ valuation on K,

Notation for non-Archimedean field

K a discretely valued field,
$v: K^{*} \rightarrow \mathbb{Z}$ valuation on K,
$|x|=a^{-v(x)}$ for some $a>1$,

Notation for non-Archimedean field

K a discretely valued field,
$v: K^{*} \rightarrow \mathbb{Z}$ valuation on K,
$|x|=a^{-v(x)}$ for some $a>1$,
\mathcal{O}_{K} the ring of integers of K,

Notation for non-Archimedean field

K a discretely valued field,
$v: K^{*} \rightarrow \mathbb{Z}$ valuation on K,
$|x|=a^{-v(x)}$ for some $a>1$,
\mathcal{O}_{K} the ring of integers of K,
π a uniformizer such that $\mathfrak{M}_{K}=\pi \mathcal{O}_{K}$,

Notation for non-Archimedean field

K a discretely valued field,
$v: K^{*} \rightarrow \mathbb{Z}$ valuation on K,
$|x|=a^{-v(x)}$ for some $a>1$,
\mathcal{O}_{K} the ring of integers of K,
π a uniformizer such that $\mathfrak{M}_{K}=\pi \mathcal{O}_{K}$,
$\widetilde{K}=\mathcal{O}_{K} / \mathfrak{M}_{K}$ assumed to be algebraically closed,
completion of an algebraic closure of K,

Notation for non-Archimedean field

K a discretely valued field,
$v: K^{*} \rightarrow \mathbb{Z}$ valuation on K,
$|x|=a^{-v(x)}$ for some $a>1$,
\mathcal{O}_{K} the ring of integers of K,
π a uniformizer such that $\mathfrak{M}_{K}=\pi \mathcal{O}_{K}$,
$\widetilde{K}=\mathcal{O}_{K} / \mathfrak{M}_{K}$ assumed to be algebraically closed,
$p=\operatorname{Char}(\widetilde{K}) \geq 0$,

Notation for non-Archimedean field

K a discretely valued field,
$v: K^{*} \rightarrow \mathbb{Z}$ valuation on K,
$|x|=a^{-v(x)}$ for some $a>1$,
\mathcal{O}_{K} the ring of integers of K,
π a uniformizer such that $\mathfrak{M}_{K}=\pi \mathcal{O}_{K}$,
$\widetilde{K}=\mathcal{O}_{K} / \mathfrak{M}_{K}$ assumed to be algebraically closed,
$p=\operatorname{Char}(\widetilde{K}) \geq 0$,
\mathbb{C}_{V} completion of an algebraic closure of K,

Notation for non-Archimedean field

K a discretely valued field,
$v: K^{*} \rightarrow \mathbb{Z}$ valuation on K,
$|x|=a^{-v(x)}$ for some $a>1$,
\mathcal{O}_{K} the ring of integers of K,
π a uniformizer such that $\mathfrak{M}_{K}=\pi \mathcal{O}_{K}$,
$\widetilde{K}=\mathcal{O}_{K} / \mathfrak{M}_{K}$ assumed to be algebraically closed,
$p=\operatorname{Char}(\widetilde{K}) \geq 0$,
\mathbb{C}_{V} completion of an algebraic closure of K,
$\widehat{\mathcal{O}}_{v}$ the ring of integers of \mathbb{C}_{v}.

Reduction

Write $\varphi(x, y)=[f(x, y), g(x, y)]$ with $f, g \in \mathcal{O}_{K}[x, y]$, homogeneous of degree d with at least one coefficient being a unit. Set $\widetilde{\varphi}=[\widetilde{f}, \widetilde{g}]$.

Reduction

Write $\varphi(x, y)=[f(x, y), g(x, y)]$ with $f, g \in \mathcal{O}_{K}[x, y]$, homogeneous of degree d with at least one coefficient being a unit. Set $\widetilde{\varphi}=[\widetilde{f}, \widetilde{g}]$.
Good reduction: φ is said to have good reduction (over \mathbb{C}_{v}) if there exists a $\gamma \in \operatorname{PGL}\left(2, \mathbb{C}_{v}\right)$ such that

$$
\varphi^{\gamma}(z)=\left(\gamma^{-1} \circ \varphi \circ \gamma\right)(z)=\frac{f(z)}{g(z)}, f, g \in \widehat{\mathcal{O}}_{v}[z]
$$

satisfying

$$
v(\operatorname{Res}(\varphi))=0 .
$$

Reduction

Write $\varphi(x, y)=[f(x, y), g(x, y)]$ with $f, g \in \mathcal{O}_{K}[x, y]$, homogeneous of degree d with at least one coefficient being a unit. Set $\widetilde{\varphi}=[\widetilde{f}, \widetilde{g}]$.
Good reduction: φ is said to have good reduction (over \mathbb{C}_{v}) if there exists a $\gamma \in \operatorname{PGL}\left(2, \mathbb{C}_{v}\right)$ such that

$$
\varphi^{\gamma}(z)=\left(\gamma^{-1} \circ \varphi \circ \gamma\right)(z)=\frac{f(z)}{g(z)}, f, g \in \widehat{\mathcal{O}}_{v}[z]
$$

satisfying

$$
v(\operatorname{Res}(\varphi))=0 .
$$

Reduction and Julia set

Although it's not explicitly stated, P. Morton and J. Silverman's work shows that:

Theorem (Morton-Silverman)

If φ has good reduction over \mathbb{C}_{v} then $\mathcal{J}_{\varphi}=\mathcal{J}_{\varphi}\left(\mathbb{C}_{v}\right)$ is empty.

Reduction and Julia set

Although it's not explicitly stated, P. Morton and J. Silverman's work shows that:

Theorem (Morton-Silverman)

If φ has good reduction over \mathbb{C}_{v} then $\mathcal{J}_{\varphi}=\mathcal{J}_{\varphi}\left(\mathbb{C}_{v}\right)$ is empty.

Remark (Properties of Julia set)

Reduction and Julia set

Although it's not explicitly stated, P. Morton and J. Silverman's work shows that:

Theorem (Morton-Silverman)

If φ has good reduction over \mathbb{C}_{v} then $\mathcal{J}_{\varphi}=\mathcal{J}_{\varphi}\left(\mathbb{C}_{v}\right)$ is empty.

Remark (Properties of Julia set)

(1) $\mathcal{J}_{\varphi} \subset \overline{\cup_{m} \operatorname{Per}_{m}(\varphi)}\left(\right.$ closure in $\left.\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)\right)$.

Reduction and Julia set

Although it's not explicitly stated, P. Morton and J. Silverman's work shows that:

Theorem (Morton-Silverman)

If φ has good reduction over \mathbb{C}_{v} then $\mathcal{J}_{\varphi}=\mathcal{J}_{\varphi}\left(\mathbb{C}_{v}\right)$ is empty.

Remark (Properties of Julia set)

(1) $\mathcal{J}_{\varphi} \subset \overline{\cup_{m} \operatorname{Per}_{m}(\varphi)}\left(\right.$ closure in $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$).
(2) \mathcal{J}_{φ} may not be compact in $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$.

Reduction and Julia set

Although it's not explicitly stated, P. Morton and J. Silverman's work shows that:

Theorem (Morton-Silverman)

If φ has good reduction over \mathbb{C}_{v} then $\mathcal{J}_{\varphi}=\mathcal{J}_{\varphi}\left(\mathbb{C}_{v}\right)$ is empty.

Remark (Properties of Julia set)

(1) $\mathcal{J}_{\varphi} \subset \overline{\cup_{m} \operatorname{Per}_{m}(\varphi)}\left(\right.$ closure in $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$).
(2) \mathcal{J}_{φ} may not be compact in $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$.
(3) A periodic point for φ is in the Julia set \mathcal{J}_{φ} if and only if it is a repelling periodic point.

Detecting the Julia set

Detecting the Julia set

- $\mathcal{J}_{\varphi}(K) \subset \mathbb{P}^{1}(K) \subset \mathbf{P}_{\text {Berk }}^{1}$ (the Berkovich projective line).

Detecting the Julia set

- $\mathcal{J}_{\varphi}(K) \subset \mathbb{P}^{1}(K) \subset \mathbf{P}_{\text {Berk }}^{1}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(K)$ as a subtree of $\mathbf{P}_{\text {Berk }}^{1}$.

Julia set and Indeterminacies:

Detecting the Julia set

- $\mathcal{J}_{\varphi}(K) \subset \mathbb{P}^{1}(K) \subset \mathbf{P}_{\text {Berk }}^{1}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(K)$ as a subtree of $\mathbf{P}_{\text {Berk }}^{1}$. Julia set and Indeterminacies:

Detecting the Julia set

- $\mathcal{J}_{\varphi}(K) \subset \mathbb{P}^{1}(K) \subset \mathbf{P}_{\text {Berk }}^{1}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(K)$ as a subtree of $\mathbf{P}_{\text {Berk }}^{1}$. Julia set and Indeterminacies:
X a smooth separated scheme of finite type over \mathcal{O}_{K}, satisfying

Detecting the Julia set

- $\mathcal{J}_{\varphi}(K) \subset \mathbb{P}^{1}(K) \subset \mathbf{P}_{\text {Berk }}^{1}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(K)$ as a subtree of $\mathbf{P}_{\text {Berk }}^{1}$. Julia set and Indeterminacies:
X a smooth separated scheme of finite type over \mathcal{O}_{K}, satisfying
(i) the generic fiber $X_{\eta} \simeq \mathbb{P}_{K}^{1}$; and

Detecting the Julia set

- $\mathcal{J}_{\varphi}(K) \subset \mathbb{P}^{1}(K) \subset \mathbf{P}_{\text {Berk }}^{1}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(K)$ as a subtree of $\mathbf{P}_{\text {Berk }}^{1}$.

Julia set and Indeterminacies:

X a smooth separated scheme of finite type over \mathcal{O}_{K}, satisfying
(i) the generic fiber $X_{\eta} \simeq \mathbb{P}_{K}^{1}$; and
(ii) $\mathbb{P}^{1}(K) \simeq X\left(\mathcal{O}_{K}\right)$.

Detecting the Julia set

- $\mathcal{J}_{\varphi}(K) \subset \mathbb{P}^{1}(K) \subset \mathbf{P}_{\text {Berk }}^{1}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(K)$ as a subtree of $\mathbf{P}_{\text {Berk }}^{1}$.

Julia set and Indeterminacies:

X a smooth separated scheme of finite type over \mathcal{O}_{K}, satisfying
(i) the generic fiber $X_{\eta} \simeq \mathbb{P}_{K}^{1}$; and
(ii) $\mathbb{P}^{1}(K) \simeq X\left(\mathcal{O}_{K}\right)$.

In this talk, we call such an X a model of \mathbb{P}_{K}^{1}.

Detecting the Julia set

- $\mathcal{J}_{\varphi}(K) \subset \mathbb{P}^{1}(K) \subset \mathbf{P}_{\text {Berk }}^{1}$ (the Berkovich projective line). We would like to compute $\mathcal{J}_{\varphi}(K)$ as a subtree of $\mathbf{P}_{\text {Berk }}^{1}$. Julia set and Indeterminacies:
X a smooth separated scheme of finite type over \mathcal{O}_{K}, satisfying
(i) the generic fiber $X_{\eta} \simeq \mathbb{P}_{K}^{1}$; and
(ii) $\mathbb{P}^{1}(K) \simeq X\left(\mathcal{O}_{K}\right)$.

In this talk, we call such an X a model of \mathbb{P}_{K}^{1}.

- Let ϕ denote the extension of φ on X. Then, in general we get a rational map

$$
\phi: X \rightarrow X
$$

Detecting the Julia set

Detecting the Julia set

Let \widetilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^{1}(K)$.

Detecting the Julia set

Let \widetilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^{1}(K)$. $\bar{Q}=$ the closure of Q in X.

Detecting the Julia set

Let \widetilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^{1}(K)$. $\bar{Q}=$ the closure of Q in X. $\widetilde{Q}=$ the closed point where \bar{Q} meets with \widetilde{X}.

Detecting the Julia set

Let \widetilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^{1}(K)$.
$\bar{Q}=$ the closure of Q in X.
$\widetilde{Q}=$ the closed point where \bar{Q} meets with \widetilde{X}.

Theorem

Assume that $\mathcal{J}_{\varphi}(K)$ is non-empty and let $Q \in \mathcal{J}_{\varphi}(K)$. Then $\left\{\varphi^{n}(Q) \mid n \geq 1\right\}$ has non-empty intersection with the set of indeterminacies of ϕ.
(1) If there is a model X of \mathbb{P}_{K}^{1} such that the extension ϕ is a morphism on X, then $\mathcal{J}_{\varphi}(K)$ is empty.
(2) Such a model is called a weak Néron model for the pair
$\left(\mathbb{P}_{K}^{1}, \varphi\right)$ by Call and Silverman.

Detecting the Julia set

Let \widetilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^{1}(K)$.
$\bar{Q}=$ the closure of Q in X.
$\widetilde{Q}=$ the closed point where \bar{Q} meets with \widetilde{X}.

Theorem

Assume that $\mathcal{J}_{\varphi}(K)$ is non-empty and let $Q \in \mathcal{J}_{\varphi}(K)$. Then $\left\{\varphi^{n}(Q) \mid n \geq 1\right\}$ has non-empty intersection with the set of indeterminacies of ϕ.

Remark

Detecting the Julia set

Let \widetilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^{1}(K)$.
$\bar{Q}=$ the closure of Q in X.
$\widetilde{Q}=$ the closed point where \bar{Q} meets with \widetilde{X}.

Theorem

Assume that $\mathcal{J}_{\varphi}(K)$ is non-empty and let $Q \in \mathcal{J}_{\varphi}(K)$. Then $\left\{\widetilde{\varphi^{n}(Q)} \mid n \geq 1\right\}$ has non-empty intersection with the set of indeterminacies of ϕ.

Remark

(1) If there is a model X of \mathbb{P}_{K}^{1} such that the extension ϕ is a morphism on X, then $\mathcal{J}_{\varphi}(K)$ is empty.

Detecting the Julia set

Let \widetilde{X} denote the special fiber of X and let $Q \in \mathbb{P}^{1}(K)$.
$\bar{Q}=$ the closure of Q in X.
$\widetilde{Q}=$ the closed point where \bar{Q} meets with \widetilde{X}.

Theorem

Assume that $\mathcal{J}_{\varphi}(K)$ is non-empty and let $Q \in \mathcal{J}_{\varphi}(K)$. Then $\left\{\widetilde{\varphi^{n}(Q)} \mid n \geq 1\right\}$ has non-empty intersection with the set of indeterminacies of ϕ.

Remark

(1) If there is a model X of \mathbb{P}_{K}^{1} such that the extension ϕ is a morphism on X, then $\mathcal{J}_{\varphi}(K)$ is empty.
(2) Such a model is called a weak Néron model for the pair $\left(\mathbb{P}_{K}^{1}, \varphi\right)$ by Call and Silverman.

An algorithm

An algorithm

Assume that we are given a model X of \mathbb{P}^{1} and an extension of φ

An algorithm

Assume that we are given a model X of \mathbb{P}^{1} and an extension of φ

$$
\phi: X \rightarrow X
$$

An algorithm

Assume that we are given a model X of \mathbb{P}^{1} and an extension of φ

$$
\phi: X \rightarrow X
$$

By blowing up the indeterminacies of ϕ we can find a model X^{\prime} and a birational morphism $\tau: X^{\prime} \rightarrow X$ such that ϕ is lifted to a morphism
\qquad

An algorithm

Assume that we are given a model X of \mathbb{P}^{1} and an extension of φ

$$
\phi: X \rightarrow X
$$

By blowing up the indeterminacies of ϕ we can find a model X^{\prime} and a birational morphism $\tau: X^{\prime} \rightarrow X$ such that ϕ is lifted to a morphism

$$
\widehat{\phi}: X^{\prime} \rightarrow X
$$

such that we have a (triangle) diagram!

[^0]
An algorithm

Assume that we are given a model X of \mathbb{P}^{1} and an extension of φ

$$
\phi: X \rightarrow X
$$

By blowing up the indeterminacies of ϕ we can find a model X^{\prime} and a birational morphism $\tau: X^{\prime} \rightarrow X$ such that ϕ is lifted to a morphism

$$
\widehat{\phi}: X^{\prime} \rightarrow X
$$

such that we have a (triangle) diagram! Repeat the process, we obtain a sequence of models $X_{0} \stackrel{\tau_{0}}{\leftarrow} X_{1} \stackrel{\tau_{1}}{\leftarrow} X_{2} \leftarrow \cdots X_{n} \leftarrow \cdots$

An algorithm

Assume that we are given a model X of \mathbb{P}^{1} and an extension of φ

$$
\phi: X \rightarrow X
$$

By blowing up the indeterminacies of ϕ we can find a model X^{\prime} and a birational morphism $\tau: X^{\prime} \rightarrow X$ such that ϕ is lifted to a morphism

$$
\widehat{\phi}: X^{\prime} \rightarrow X
$$

such that we have a (triangle) diagram! Repeat the process, we obtain a sequence of models $X_{0} \stackrel{\tau_{0}}{\leftarrow} X_{1} \stackrel{\tau_{1}}{\leftarrow} X_{2} \leftarrow \cdots X_{n} \leftarrow \cdots$ Let \mathcal{T}_{i} be the dual graph of \widetilde{X}_{i}. Then, we have

An algorithm

Assume that we are given a model X of \mathbb{P}^{1} and an extension of φ

$$
\phi: X \rightarrow X
$$

By blowing up the indeterminacies of ϕ we can find a model X^{\prime} and a birational morphism $\tau: X^{\prime} \rightarrow X$ such that ϕ is lifted to a morphism

$$
\widehat{\phi}: X^{\prime} \rightarrow X
$$

such that we have a (triangle) diagram! Repeat the process, we obtain a sequence of models $X_{0} \stackrel{\tau_{0}}{\leftarrow} X_{1} \stackrel{\tau_{1}}{\leftarrow} X_{2} \leftarrow \cdots X_{n} \leftarrow \cdots$ Let \mathcal{T}_{i} be the dual graph of \widetilde{X}_{i}. Then, we have $\mathcal{T}_{0} \rightarrow \mathcal{T}_{1} \rightarrow \mathcal{T}_{2} \rightarrow \cdots$

An algorithm

Assume that we are given a model X of \mathbb{P}^{1} and an extension of φ

$$
\phi: X \rightarrow X
$$

By blowing up the indeterminacies of ϕ we can find a model X^{\prime} and a birational morphism $\tau: X^{\prime} \rightarrow X$ such that ϕ is lifted to a morphism

$$
\widehat{\phi}: X^{\prime} \rightarrow X
$$

such that we have a (triangle) diagram! Repeat the process, we obtain a sequence of models $X_{0} \stackrel{\tau_{0}}{\leftarrow} X_{1} \stackrel{\tau_{1}}{\leftarrow} X_{2} \leftarrow \cdots X_{n} \leftarrow \cdots$ Let \mathcal{T}_{i} be the dual graph of \widetilde{X}_{i}. Then, we have $\mathcal{T}_{0} \rightarrow \mathcal{T}_{1} \rightarrow \mathcal{T}_{2} \rightarrow \cdots$
Put $\mathcal{T}_{\varphi}:=\lim _{\rightarrow} \mathcal{T}_{i} \hookrightarrow \mathbf{P}_{\text {Berk }}^{1}$. Then, $\mathcal{J}_{\varphi}(K) \simeq \partial \mathcal{T}_{\varphi}$.

p-adic Julia sets

Example

(1) $\varphi(z)=f(z) / p$ where $f(z) \in \mathbb{Z}_{p}[z]$ monic and

p-adic Julia sets

Example

(1) $\varphi(z)=f(z) / p$ where $f(z) \in \mathbb{Z}_{p}[z]$ monic and

$$
f(z) \equiv z^{p}-z \quad(\bmod p)
$$

p-adic Julia sets

Example

(1) $\varphi(z)=f(z) / p$ where $f(z) \in \mathbb{Z}_{p}[z]$ monic and

$$
f(z) \equiv z^{p}-z \quad(\bmod p)
$$

Then, $\mathcal{J}_{\varphi}=\mathbb{Z}_{p}$.

p-adic Julia sets

Example

(1) $\varphi(z)=f(z) / p$ where $f(z) \in \mathbb{Z}_{p}[z]$ monic and

$$
f(z) \equiv z^{p}-z \quad(\bmod p)
$$

Then, $\mathcal{J}_{\varphi}=\mathbb{Z}_{p}$.
(2) Let $p \neq 2$ and $\varphi(z)=p z^{3}+a z^{2}+b \in \mathbb{Z}_{p}[z]$ with $a \in \mathbb{Z}_{p}^{*}$. Then,

p-adic Julia sets

Example

(1) $\varphi(z)=f(z) / p$ where $f(z) \in \mathbb{Z}_{p}[z]$ monic and

$$
f(z) \equiv z^{p}-z \quad(\bmod p)
$$

Then, $\mathcal{J}_{\varphi}=\mathbb{Z}_{p}$.
(2) Let $p \neq 2$ and $\varphi(z)=p z^{3}+a z^{2}+b \in \mathbb{Z}_{p}[z]$ with $a \in \mathbb{Z}_{p}^{*}$. Then,

- $\mathcal{J}_{\varphi}\left(\mathbb{Q}_{p}^{\mathrm{n} r}\right)=\{\mathrm{p} t\}$.

p-adic Julia sets

Example

(1) $\varphi(z)=f(z) / p$ where $f(z) \in \mathbb{Z}_{p}[z]$ monic and

$$
f(z) \equiv z^{p}-z \quad(\bmod p)
$$

Then, $\mathcal{J}_{\varphi}=\mathbb{Z}_{p}$.
(2) Let $p \neq 2$ and $\varphi(z)=p z^{3}+a z^{2}+b \in \mathbb{Z}_{p}[z]$ with $a \in \mathbb{Z}_{p}^{*}$.

Then,

- $\mathcal{J}_{\varphi}\left(\mathbb{Q}_{p}^{\mathrm{n} r}\right)=\{\mathrm{p} t\}$.
- $\mathcal{J}_{\varphi}(K) \neq \mathcal{J}_{\varphi}$ for any discretely valued subfield K of \mathbb{C}_{p}.

p-adic Julia sets

Example

(1) $\varphi(z)=f(z) / p$ where $f(z) \in \mathbb{Z}_{p}[z]$ monic and

$$
f(z) \equiv z^{p}-z \quad(\bmod p)
$$

Then, $\mathcal{J}_{\varphi}=\mathbb{Z}_{p}$.
(2) Let $p \neq 2$ and $\varphi(z)=p z^{3}+a z^{2}+b \in \mathbb{Z}_{p}[z]$ with $a \in \mathbb{Z}_{p}^{*}$.

Then,

- $\mathcal{J}_{\varphi}\left(\mathbb{Q}_{p}^{\mathrm{n} r}\right)=\{\mathrm{p} t\}$.
- $\mathcal{J}_{\varphi}(K) \neq \mathcal{J}_{\varphi}$ for any discretely valued subfield K of \mathbb{C}_{p}.
- \mathcal{J}_{φ} is not compact in $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$.

Density of repelling periodic points

Density question: Is \mathcal{J}_{φ} the closure of repelling periodic points? Partial results under some conditions have been obtained.

Density of repelling periodic points

Density question: Is \mathcal{J}_{φ} the closure of repelling periodic points? Partial results under some conditions have been obtained.

Theorem (J.-P. Bézivin)

If φ has at least one repelling periodic point, then \mathcal{J}_{φ} is the closure of repelling periodic points.

Okuyama's theorem holds over the complex field as well

Density of repelling periodic points

Density question: Is \mathcal{J}_{φ} the closure of repelling periodic points? Partial results under some conditions have been obtained.

Theorem (J.-P. Bézivin)

If φ has at least one repelling periodic point, then \mathcal{J}_{φ} is the closure of repelling periodic points.

Theorem (Y. Okuyama)

If the Lyapunov exponent $L(\varphi)$ is positive, then \mathcal{J}_{φ} is the closure of repelling periodic points.

Okuyama's theorem holds over the complex field as well.

Density of repelling periodic points

Density question: Is \mathcal{J}_{φ} the closure of repelling periodic points? Partial results under some conditions have been obtained.

Theorem (J.-P. Bézivin)

If φ has at least one repelling periodic point, then \mathcal{J}_{φ} is the closure of repelling periodic points.

Theorem (Y. Okuyama)

If the Lyapunov exponent $L(\varphi)$ is positive, then \mathcal{J}_{φ} is the closure of repelling periodic points.

Okuyama's theorem holds over the complex field as well.

Introduction

Question

(1). How to detect whether or not $\mathcal{J}_{\varphi}(K)=\emptyset$ effectively? (2). Suppose $\mathcal{J}_{\varphi} \neq \emptyset$. Is it true that φ has a repelling periodic

Question

(1). How to detect whether or not $\mathcal{J}_{\varphi}(K)=\emptyset$ effectively?

Question

(1). How to detect whether or not $\mathcal{J}_{\varphi}(K)=\emptyset$ effectively?
(2). Suppose $\mathcal{J}_{\varphi} \neq \emptyset$. Is it true that φ has a repelling periodic point?

Question

(1). How to detect whether or not $\mathcal{J}_{\varphi}(K)=\emptyset$ effectively?
(2). Suppose $\mathcal{J}_{\varphi} \neq \emptyset$. Is it true that φ has a repelling periodic point?
(3). Assume that $\mathcal{J}_{\varphi}(K) \neq \emptyset$. Determine the dynamics of φ on $\mathcal{J}_{\varphi}(K)$.

The converse statement of Morton-Silverman Theorem does not hold in general.

- If E is a Tate curve, then φ does not have good reduction over

The converse statement of Morton-Silverman Theorem does not hold in general.

Example

(1). Lattès family Let E be an elliptic curve over K and consider diagram:

$$
\begin{aligned}
& E \xrightarrow{[m]} \\
& \downarrow \\
& \mathbb{P}_{K}^{1} \xrightarrow{\varphi} \downarrow \\
& \mathbb{P}_{K}^{1}
\end{aligned}
$$

$$
\text { If } E \text { is a Tate curve, then } \varphi \text { does not have good reduction over }
$$

The converse statement of Morton-Silverman Theorem does not hold in general.

Example

(1). Lattès family Let E be an elliptic curve over K and consider diagram:

$$
\begin{array}{rlr}
E & \xrightarrow{[m]} & E \\
& & \downarrow \\
\mathbb{P}_{K}^{1} \xrightarrow{\varphi} & \mathbb{P}_{K}^{1}
\end{array}
$$

- If E is a Tate curve, then φ does not have good reduction over \mathbb{C}_{v}.

Example

(2). (Favre and Rivera-Letelier) Let $k \geq 2$ and $d_{1}, \ldots, d_{k}>1$ be integers. Let $a_{2}, \ldots, a_{k} \in \mathbb{C}_{v}^{*}$ such that $\left|a_{k}\right|>\cdots>\left|a_{2}\right|>0$. Set $\delta_{1}=d_{1}, \delta_{j}=d_{j}+d_{j-1}$ for $j=2, \ldots, k$ and

$$
\varphi(z)=z^{d_{1}} \prod_{j=2}^{k}\left(1+\left(a_{j} z\right)^{\delta_{j}}\right)^{(-1)^{j}}
$$

If $\sum d_{j}^{-1} \leq 1$ then there exist a_{2}, \ldots, a_{k} such that $\mathcal{J}_{\varphi}=\emptyset$ and φ does not have good reduction over \mathbb{C}_{v}.

Polynomial dynamics

We restrict to the case $\varphi(z) \in K[z]$.

Polynomial dynamics

We restrict to the case $\varphi(z) \in K[z]$.

- $\mathcal{J}_{\varphi}(K)$ is a compact subset of $\mathbb{P}^{1}(K)$.

Polynomial dynamics

We restrict to the case $\varphi(z) \in K[z]$.

- $\mathcal{J}_{\varphi}(K)$ is a compact subset of $\mathbb{P}^{1}(K)$.

Goal: Look for an effective algorithm to determine whether $\mathcal{J}_{\varphi}(K)$ is empty or not.

Quadratic family

Low degrees $d=2,3$:

Quadratic family

Low degrees $d=2,3$:
For the quadratic family, the situation is much simpler than the classical case $(K=\mathbb{C})$. Let $\varphi_{c}(z)=z^{2}+c$ and $\mathcal{J}_{c}(K)=\mathcal{J}_{\varphi_{c}}(K)$.

[^1]
Quadratic family

Low degrees $d=2,3$:
For the quadratic family, the situation is much simpler than the classical case $(K=\mathbb{C})$. Let $\varphi_{c}(z)=z^{2}+c$ and $\mathcal{J}_{c}(K)=\mathcal{J}_{\varphi_{c}}(K)$.

Theorem (Benedetto-Briend-Perdry)

$\mathcal{J}_{c}(K) \neq \emptyset$ if and only if one of the following conditions holds.
(1) $p \neq 2: \quad v(c)=-2 k<0$;
(2) $p=2$: $v(4 c)<0$ and $1-4 c$ is a square in K.

In this case $\left(\mathcal{J}_{c}(K) \neq \emptyset\right)$, we have $\mathcal{J}_{c}(K)=\mathcal{J}_{c}$ and the dynamics of φ on $\mathcal{J}_{c}(K)$ is topologically conjugated to the full (one-sided) 2-shift.

- We can rephrase the theorem as the following
$\mathcal{J}_{c}(K) \neq \emptyset$ if and only if the two (finite) fixed points of φ_{c} are

Quadratic family

Low degrees $d=2,3$:
For the quadratic family, the situation is much simpler than the classical case $(K=\mathbb{C})$. Let $\varphi_{c}(z)=z^{2}+c$ and $\mathcal{J}_{c}(K)=\mathcal{J}_{\varphi_{c}}(K)$.

Theorem (Benedetto-Briend-Perdry)

$\mathcal{J}_{c}(K) \neq \emptyset$ if and only if one of the following conditions holds.
(1) $p \neq 2: \quad v(c)=-2 k<0$;
(2) $p=2$: $v(4 c)<0$ and $1-4 c$ is a square in K.

In this case $\left(\mathcal{J}_{c}(K) \neq \emptyset\right)$, we have $\mathcal{J}_{c}(K)=\mathcal{J}_{c}$ and the dynamics of φ on $\mathcal{J}_{c}(K)$ is topologically conjugated to the full (one-sided) 2-shift.

- We can rephrase the theorem as the following

Quadratic family

Low degrees $d=2,3$:
For the quadratic family, the situation is much simpler than the classical case $(K=\mathbb{C})$. Let $\varphi_{c}(z)=z^{2}+c$ and $\mathcal{J}_{c}(K)=\mathcal{J}_{\varphi_{c}}(K)$.

Theorem (Benedetto-Briend-Perdry)

$\mathcal{J}_{c}(K) \neq \emptyset$ if and only if one of the following conditions holds.
(1) $p \neq 2: \quad v(c)=-2 k<0$;
(2) $p=2$: $v(4 c)<0$ and $1-4 c$ is a square in K.

In this case $\left(\mathcal{J}_{c}(K) \neq \emptyset\right)$, we have $\mathcal{J}_{c}(K)=\mathcal{J}_{c}$ and the dynamics of φ on $\mathcal{J}_{c}(K)$ is topologically conjugated to the full (one-sided) 2-shift.

- We can rephrase the theorem as the following $\mathcal{J}_{c}(K) \neq \emptyset$ if and only if the two (finite) fixed points of φ_{c} are K-rational and repelling.

Cubic polynomials

For cubic polynomials criterion for the existence of K-rational Julia set is similar to the quadratic family.

Cubic polynomials

For cubic polynomials criterion for the existence of K-rational Julia set is similar to the quadratic family.

```
Theorem (Briend-Hsia)
Let \(\varphi\) be a cubic polynomial. Then the K-rational Julia set \(\mathcal{J}_{\varphi}(K) \neq \emptyset\) if and only if one of the fixed point of \(\varphi\) is \(K\)-rational and repelling.
```


Remarks

Remarks

Remarks

- (B.-H.) The same criterion holds for the family of quadratic rational maps.

Remarks

- (B.-H.) The same criterion holds for the family of quadratic rational maps.
- Proofs show that $\mathcal{J}_{\varphi}=\emptyset \Longrightarrow \varphi$ has good reduction over \mathbb{C}_{v}.

Remarks

- (B.-H.) The same criterion holds for the family of quadratic rational maps.
- Proofs show that $\mathcal{J}_{\varphi}=\emptyset \Longrightarrow \varphi$ has good reduction over \mathbb{C}_{v}.
- For $d=2,3$, the criterion for determining the existence of \mathcal{J}_{φ} $\left(\mathcal{J}_{\varphi}(K)\right)$ is effective.

Remarks

- (B.-H.) The same criterion holds for the family of quadratic rational maps.
- Proofs show that $\mathcal{J}_{\varphi}=\emptyset \Longrightarrow \varphi$ has good reduction over \mathbb{C}_{v}.
- For $d=2,3$, the criterion for determining the existence of \mathcal{J}_{φ} $\left(\mathcal{J}_{\varphi}(K)\right)$ is effective.
- Remark made by Silverman: the above criterion for rational maps follows from his theorem on the \mathbb{Z}-structure of the moduli space \mathcal{M}_{d} and that \mathcal{M}_{2} is isomorphic to $\mathbb{A}_{\mathbb{Z}}^{2}$ as schemes over \mathbb{Z}.
The following example of Benedetto shows that for polynomial maps the converse of Morton-Silverman's result does not hold either

Example (R. Benedetto)

(1) Let the recidue characteristic p be odd. Let $a \in \mathbb{C}_{V}$ satisfy $-p /(2 p+2) \leq v(a)<0$. Let $\varphi(z)=z^{2}(z-a)^{p}$. Then, $\mathcal{J} \varphi=\emptyset$ and φ does not have good reduction over \mathbb{C}_{v}. (2) For $p=2$ the following axamule shares the same property as in (1)

The following example of Benedetto shows that for polynomial maps the converse of Morton-Silverman's result does not hold either.

The following example of Benedetto shows that for polynomial maps the converse of Morton-Silverman's result does not hold either.

Example (R. Benedetto)

The following example of Benedetto shows that for polynomial maps the converse of Morton-Silverman's result does not hold either.

Example (R. Benedetto)

(1) Let the residue characteristic p be odd. Let $a \in \mathbb{C}_{v}$ satisfy $-p /(2 p+2) \leq v(a)<0$. Let $\varphi(z)=z^{2}(z-a)^{p}$. Then, $\mathcal{J}_{\varphi}=\emptyset$ and φ does not have good reduction over \mathbb{C}_{v}.

The following example of Benedetto shows that for polynomial maps the converse of Morton-Silverman's result does not hold either.

Example (R. Benedetto)

(1) Let the residue characteristic p be odd. Let $a \in \mathbb{C}_{v}$ satisfy $-p /(2 p+2) \leq v(a)<0$. Let $\varphi(z)=z^{2}(z-a)^{p}$. Then, $\mathcal{J}_{\varphi}=\emptyset$ and φ does not have good reduction over \mathbb{C}_{v}.
(2) For $p=2$, the following example shares the same property as in (1)

$$
\varphi(z)=z^{4}+\frac{z^{2}}{\sqrt{2}} \in \mathbb{C}_{2}[z]
$$

Higher degree polynomials

 is?

Higher degree polynomials

For polynomial with $\operatorname{deg} \varphi \geq 4$, the above criterion for $d=2,3$ does not hold in general.

Higher degree polynomials

For polynomial with $\operatorname{deg} \varphi \geq 4$, the above criterion for $d=2,3$ does not hold in general.
Let $(p, d) \notin\{(2,4),(2,5),(2,7),(3,5)\}$.

Then, $\operatorname{Fix}(\varphi)=\{0,1, \infty\}$ and non-repelling.
$T .(K) \neq(X$ and the minimal nerind of the ren lling periodic points

Higher degree polynomials

For polynomial with $\operatorname{deg} \varphi \geq 4$, the above criterion for $d=2,3$ does not hold in general.
Let $(p, d) \notin\{(2,4),(2,5),(2,7),(3,5)\}$.
Write $d=e_{0}+e_{1}$ or $e_{0}+e_{1}+e_{2}$ such that $e_{i} \geq 2$ and $p \nmid e_{i}$ (if $p=0$, this condition is empty).

Then, $\operatorname{Fix}(\varphi)=\{0,1, \infty\}$ and non-repelling.
$\mathcal{J}_{\varphi}(K) \neq \emptyset$ and the minimal period of the repel ling periodic points

Higher degree polynomials

For polynomial with $\operatorname{deg} \varphi \geq 4$, the above criterion for $d=2,3$ does not hold in general.
Let $(p, d) \notin\{(2,4),(2,5),(2,7),(3,5)\}$.
Write $d=e_{0}+e_{1}$ or $e_{0}+e_{1}+e_{2}$ such that $e_{i} \geq 2$ and $p \nmid e_{i}$ (if
$p=0$, this condition is empty).
Let $n=\operatorname{Icm}\left(\left\{e_{i}\right\}\right)$.

Then, $\operatorname{Fix}(\varphi)=\{0,1, \infty\}$ and non-repelling.
$\mathcal{J}_{\varphi}(K) \neq \emptyset$ and the minimal period of the repelling periodic points

Higher degree polynomials

For polynomial with $\operatorname{deg} \varphi \geq 4$, the above criterion for $d=2,3$ does not hold in general.
Let $(p, d) \notin\{(2,4),(2,5),(2,7),(3,5)\}$.
Write $d=e_{0}+e_{1}$ or $e_{0}+e_{1}+e_{2}$ such that $e_{i} \geq 2$ and $p \nmid e_{i}$ (if $p=0$, this condition is empty).
Let $n=\operatorname{Icm}\left(\left\{e_{i}\right\}\right)$.

Example $\left(d=e_{0}+e_{1}\right)$

Higher degree polynomials

For polynomial with $\operatorname{deg} \varphi \geq 4$, the above criterion for $d=2,3$ does not hold in general.
Let $(p, d) \notin\{(2,4),(2,5),(2,7),(3,5)\}$.
Write $d=e_{0}+e_{1}$ or $e_{0}+e_{1}+e_{2}$ such that $e_{i} \geq 2$ and $p \nmid e_{i}$ (if $p=0$, this condition is empty).
Let $n=\operatorname{lcm}\left(\left\{e_{i}\right\}\right)$.

Example $\left(d=e_{0}+e_{1}\right)$

Let

$$
\varphi(z)=\frac{1}{\pi^{n}} z^{e_{0}}(z-1)^{e_{1}}+z
$$

Then and non-repelling.

Higher degree polynomials

For polynomial with $\operatorname{deg} \varphi \geq 4$, the above criterion for $d=2,3$ does not hold in general.
Let $(p, d) \notin\{(2,4),(2,5),(2,7),(3,5)\}$.
Write $d=e_{0}+e_{1}$ or $e_{0}+e_{1}+e_{2}$ such that $e_{i} \geq 2$ and $p \nmid e_{i}$ (if
$p=0$, this condition is empty).
Let $n=\operatorname{Icm}\left(\left\{e_{i}\right\}\right)$.

Example $\left(d=e_{0}+e_{1}\right)$

Let

$$
\varphi(z)=\frac{1}{\pi^{n}} z^{e_{0}}(z-1)^{e_{1}}+z
$$

Then, $\operatorname{Fix}(\varphi)=\{0,1, \infty\}$ and non-repelling.

Higher degree polynomials

For polynomial with $\operatorname{deg} \varphi \geq 4$, the above criterion for $d=2,3$ does not hold in general.
Let $(p, d) \notin\{(2,4),(2,5),(2,7),(3,5)\}$.
Write $d=e_{0}+e_{1}$ or $e_{0}+e_{1}+e_{2}$ such that $e_{i} \geq 2$ and $p \nmid e_{i}$ (if
$p=0$, this condition is empty).
Let $n=\operatorname{Icm}\left(\left\{e_{i}\right\}\right)$.

Example $\left(d=e_{0}+e_{1}\right)$

Let

$$
\varphi(z)=\frac{1}{\pi^{n}} z^{e_{0}}(z-1)^{e_{1}}+z
$$

Then, $\operatorname{Fix}(\varphi)=\{0,1, \infty\}$ and non-repelling.
$\mathcal{J}_{\varphi}(K) \neq \emptyset$ and the minimal period of the repelling periodic points is 2 .

Integral points

Integral points

Consider $\sigma: \mathcal{P}_{d} \rightarrow \mathbb{A}^{N}$ where \mathcal{P}_{d} denotes the moduli space of polynomials of degree d. Let $[\varphi] \in \mathcal{P}_{d}\left(\mathbb{C}_{v}\right)$.

Integral points

Consider $\sigma: \mathcal{P}_{d} \rightarrow \mathbb{A}^{N}$ where \mathcal{P}_{d} denotes the moduli space of polynomials of degree d. Let $[\varphi] \in \mathcal{P}_{d}\left(\mathbb{C}_{v}\right)$.
If $\mathcal{J}_{\varphi}=\emptyset$ then all periodic points are non-repelling.

Integral points

Consider $\sigma: \mathcal{P}_{d} \rightarrow \mathbb{A}^{N}$ where \mathcal{P}_{d} denotes the moduli space of polynomials of degree d. Let $[\varphi] \in \mathcal{P}_{d}\left(\mathbb{C}_{v}\right)$.
If $\mathcal{J}_{\varphi}=\emptyset$ then all periodic points are non-repelling.
Hence $\sigma([\varphi]) \in \mathbb{A}^{N}\left(\widehat{\mathcal{O}_{K}}\right)$.

Integral points

Consider $\sigma: \mathcal{P}_{d} \rightarrow \mathbb{A}^{N}$ where \mathcal{P}_{d} denotes the moduli space of polynomials of degree d. Let $[\varphi] \in \mathcal{P}_{d}\left(\mathbb{C}_{v}\right)$.
If $\mathcal{J}_{\varphi}=\emptyset$ then all periodic points are non-repelling.
Hence $\sigma([\varphi]) \in \mathbb{A}^{N}\left(\widehat{\mathcal{O}_{K}}\right)$.

Question

Is it true that $\sigma^{-1}\left(\mathbb{A}^{N}\left(\widehat{\mathcal{O}_{K}}\right)\right)$ consist of all polynomials φ with empty Julia set?

Effective criterion

Effective criterion

We believe the following is true.

Effective criterion

We believe the following is true.

Conjecture

Let $\varphi \in K[z]$ be of degree d. There exist a constant $N=N(p, d)$ such that $\mathcal{J}_{\varphi}=\emptyset$ if and only if all the periodic points of period r with $1 \leq r \leq N$ are non-repelling.

[^0]: obtain a sequence of models
 Let \mathcal{T}_{i}
 be the dual graph of X_{i}. Then, we have

[^1]: - We can rephrase the theorem as the following

